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Abstract—The string matching problem is to 
find all locations of a pattern string with 
length m  in a text with length n . In this 
paper, we propose a new encoding method to 
shorten both the lengths of pattern and text, 
by substituting the substring between a 
special character by its length. Then we use 
the quick searching algorithm to solve the 
string matching problem on the encoded 
pattern and text [9]. By using the encoding 
method, the pattern and text can be 

shortened by a factor of, about, 
Σ
2

, where 

∑  denotes the size of the alphabet set 

containing all characters of text and pattern. 

In practice, it performs better than 
Σ
2

. For 

instance, using an English sentence pattern, 
of length 50, as a pattern and a text, of length 
200000, in average, they are shortened to 
about, respectively, 6% and 12.4% of the 
original sizes. Thus, the exact matching can 
be improved in a much shorter time. 
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encoding scheme. 

1. Introduction 

String matching is a fundamental 
operation, as such it has many practical 
applications in computational biology, data 
mining, intrusion detection, and data 
compression [5, 7]. 

The string matching problem is defined as 
follows. Given a text string 1 2... nT t t t=  of 
size n , a pattern string 1 2... mP p p p=  of 

size m , and the alphabet set Σ  containing all 

characters of text T  and pattern P , our 
purpose is to find all occurrences of P  in T . 

Efficient string matching algorithms have 
been proposed by many researchers [1-4, 6, 
8-9]. Two well-known optimal, ( + )m nΟ , time 

algorithms were proposed by Boyer et al. [1] 
and Knuth et al. [4]. Several string matching 
algorithms [2-3, 6, 8-9] were proposed to 
improve the hidden constant, by orders of 
magnitude. 

In this paper, we first propose a new 
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encoding method to shorten both the lengths of 
pattern and text in )( nm +Ο . Then we solve the 

string matching problem by using the quick 
searching algorithm on the encoded pattern and 
text. To evaluate the effectiveness of the 
proposed algorithms, we implemented a 
prototype and compare it with two well-known 
algorithms [1, 4]. The results show that our 
algorithm is significantly better than the 
existing ones. 

2. The Algorithms 

2.1 The Quick Search Algorithm 

 The quick search algorithm was proposed 
by Sunday [9] and it is similar to the Horspool 
algorithm [2]. Let ω  be a character in the 

alphabet. The quick search algorithm consists 
of the following two phase. In the 
pre-processing phase, we construct a 
bad-character table which is used to shift 

pattern P . The bad-character table is used to 
find whether there exists a rightmost character 

ω  in P  which is equal to the character mjt +  

in a partial window mjj tt ++ ...1 . If the character 

ω  exists in P , we record the position of ω  
from the right end in the table. If ω  does not 

exist in P , we record it as 1+m . 

In the searching phase, compare text T  
and pattern P  from left to right. Assume that 

ip  is aligned to jt . If a match occurs in P , 

output the position i  and look up the character 

mjt +  in the bad-character table to decide the 

number of steps to shift. If a mismatch occurs 

in P , we always look up the character mjt +  

in the bad-character table to decide the number 
of steps to shift. 

In Figure 1, we show an example of the 
quick search algorithm, where 

aagtcatatcacatcacT =  and atcacatP = . 

First, in the pre-processing phase, we compute 
the bad-character table as shown in Figure 1(a). 

Then, in the searching phase, we scan text T  
and pattern P  from left to right. Because a 
match occurs, we output the position 1 and shift 
P  3 positions by looking up character 8t  of 

the bad-character table. This case is illustrated 

in Figure 1(b). We continue to scan the text T  
and the pattern P  from left to right. When a 
mismatch occurs in 2p , we shift P  2 
positions by looking up character 11t  of the 

bad-character table. This case is also illustrated 
in Figure 1(c). By the same measure, a 
mismatch occurs in 7p , shift P  8 positions 
by looking up character 13t . If the window 

surpasses the length of text T , we stop the 
comparing. This case is illustrated in Figure 
1(d). The pre-processing phase, it costs 

)( σ+Ο m  time, where σ  is the number of 

alphabets in pattern P , the searching phase, 
takes )(mnΟ time. 

2.2 The Encoding Algorithms 

    In this section, we propose a new approach 
to solve the string matching problem. The main 
idea of our algorithm is to shorten both the 

lengths of the pattern P  and the text T . Note 
that the both lengths of encoded pattern P  
and text T  are much shorter than the original 
ones in general case. Then apply any string 
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matching algorithms [1-4, 6, 8-9] to solve the 
string matching problem on the encoded pattern 
and text. Since the string lengths are reduced, it 
is obvious that the exact matching of pattern 

P  will be much faster. Hence our approach 
has the following properties: 

1. The substring 'P  is coded in such a way 
that it becomes much shorter than P .  
The coded 'P  is denoted as enP′ . 

2. The text T  will also be coded by using 
the same coding method to code 'P .  
The coded text is denoted as enT ′ .  It will 
be shown that enT ′  is also shortened and 
will contain enP′  if T  contains P .  

3. Since both enT ′  and enP′  are short now, it 
becomes easy to determine whether enP′  
occurs in enT ′ . 

Our encoding algorithm contains three 
phases: the encoding phase, the searching phase 
and the examination phase. For the sake of 
completeness, the detailed algorithm (DEA) is 
listed in the following. 

Algorithm DEA 

Input:  mn pppPtttT ...,... 2121 ==  

Output: All occurrences of P  in T . 
Step 1: /The Encoding Phase/ 

Step 1.1:  Choose a character x  whose 

frequency in P  is as small as 
possible and exclude the following 
cases. 
Case 1: x  only appears once in 

P . 
Case 2: x  appears twice and is 

adjacent in P . 
If there is no such x, randomly 

select a character to be x .  

Step 1.2: Let enP′  be the longest substring 

of P  that begins with x  and 
ends with x .      If the length 

of the substring between two 
nearest x  is greater than 0, 

replace the substring with its 
length. 

Step 2: /The Searching Phase/ 
Use the quick search algorithm to find 
all occurrences of enP′  in enT ′  from 

left to right. Record the position i ’s 
where enP′  occurs in enT ′ . 

Step 3: /The Examination Phase/ 
Let q  denote the leftmost side 

position of x  in P , r  denote the 
leftmost side position of x  in T , and 

)(iPos  denote the corresponding 
position of T ′  while enP′  matches at 
position i  of enT ′ . 

For every position i , align P  with 

the substring 1)(,)( −+−+−+ mqiPosrqiPosrT  

to examine whether there exists an 
exact matching or not. 

2.2.1 The Encoding Phase 

The first step of the encoding phase is to 
select a character x  from some alphabet set of 

P , and we delete all characters to the first x  

in P  and all characters to the right of the last 
x  in P . Then the result is a substring 
enclosed by x . This substring must be of the 

form of 121
21

+ka
k

aa xSSxSx L  for some k  

where ix  denotes a string of i  sx ' , and the 
length of iS  could not be zero. We show an 

example of how to encode the pattern P .  Let 
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edrcabaacdstaaceP = . Suppose we select 
character c , then we can get 

rccdstaaceedP =′ . 

The second step is to encode P′  into a 
shorter string enP′ . As mentioned above, the 

form of P′  is 121
21

+ka
k

aa xSSxSx L , let id  

denote the size of iS . Then 

121
21

+=′ kk a
k

aaa
en xdxdxdxP L . If the length 

of iS  is zero, we don’t record it in enP′ . For 

example, we select a substring 

ercddcstddacceP =′ , and we have 
ddddPen 73=′ . 

Finally, we use the same method to 
encode T . Suppose x  is the character that 

we select to encode string P .  Let T ′  be a 
substring of text T , and enclosed by x . If 
character x  doesn’t exist in T , T ′  shall be 
empty. If character x  can be found in T , we 

encode T ′  as the form of 

121
21

+kk a
k

aaa xdxdxdx L , which is enT ′ . 

We show an example, where 
aactcgacgctcactacgactT =  and 

actacgactP = .  Suppose we select a 
character t  in P . Then tacgactP =′  and 

ttPen 5=′ . We also obtain 
cgacgcttacgactactT =  and ttttTen 625=′  

by using the same encoding method. 
Now we describe the conditions that how 

we select an appropriate character to encode P  
and T  into enP′  and enT ′ . Let )(xfre  

denote the frequency of character x  in P . 
We select a character x  with the minimal 
frequency. As long as )(xfre  conforms with 

the following two cases, the character x  

should be abandoned. 
Case 1: 1)( =xfre . 

Case 2: 2)( =xfre  and 2, =rlP ,  

where l  = the leftmost position of 
x  in P  and  
r  = the rightmost position of x  in 

P . 
We illustrate these two cases in the 

following: 
Case 1: 1)( =xfre . 

If we select the character whose 
1)( =xfre , the length of string enP′  will be 

equal to one. It is like that we just take one 

character of pattern P  to compare with text 
T . Of course, the exact matching probability 
will be larger than the probability of taking the 

entire P  to compare with T . But in reality, 
string P  and T  may not have so many 
matches. Let’s take an example as shown below, 
we are given a pattern bcdcbccP =  and 

daacdacbcdcbacT = . We have 1)( =dfre , 

then select it as our encoding character. In 
Figure 2(a), we can see that enP′  occurs three 
times in enT ′ . But P  does not exist in T  at 

all, as shown in Figure 2(b). 

Case 2: 2)( =xfre  and 2, =rlP . 

In Case 2, the length of string enP′  will 

become two. The exact matching probability 
will rise if we just take a substring with length 

two of P  instead of the complete pattern P  
to compare with text T . The result is not 
satisfactory. We hope that the length of enP′  is 

moderate, not too short or too long. If the length 
is very short, it will rise the probability of 
getting the wrong matching; if the length is 
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very long, it will rise the comparison times.  
Both of them are not we want to see. We show 
an example where baaccbcbbbP =  and 

bbbedaaaadaacbaaccbcT = . In Figure 3(a), 

enP′  occurs 5 times in enT ′ . But in reality, P  

only occurs one time in T , as shown in Figure 
3(b). 

If we select the character c  which 

doesn’t obey Case 1 and Case 2 in the same P  
and T , where baaccbcbbbP =  and 

bbbedaaaadaacbaaccbcT = , the occurrence 
of enP′  in enT ′  reduces to one, as shown in 

Figure 4(a). In Figure 4(b), we can see that the 

occurrence of P  in T  is really one time. The 
case of wrong matching is reduced now. 

2.2.2 The Searching Phase 

After the encoding phase, T and P  
have been encoded to enT ′  and enP′ . In the 

searching phase, we need to find all 
occurrences of enP′  in enT ′ . This is a string 

matching problem. Any string matching 
algorithms [1-4, 6, 8-9] can be used. But, since 
both text and pattern strings are reduced, we 
recommend to use the quick search algorithm 
[9]. Hence, the time complexity is 

)( enen TP ′×′Ο , better than compare the entire 

pattern P  with text T , whose time 

complexity is )( TP ×Ο . 

We show an example with ccabbabP =  
and abbccccabbababcccabbT =  in Figure 
5. First, if we select “ a ” which has the smallest 

frequency in P , we have abbaP =′ , 
aaPen 2=′  and aaaaaTen 6241=′ . The 

bad-character table can be obtained as shown in 

Figure 5(a). Then, we scan text enT ′  and 
pattern enP′  from left to right. Figure 5(b) 

shows when a mismatch occurs in position 2, 
we shift enP′  4 positions by looking up 
position 4 of enT ′  of bad-character table. We 
continue to scan text enT ′  and pattern enP′  

from left to right. When a match occurs, we 
output the position 5 and move enP′  4 steps to 

the right. The position is out of the window, 
terminate the matching phase. This case is 
shown in Figure 5(c). 

Note that there are many algorithms which 
can be used to locate all occurrences of enP′  in 

enT ′ . We also admit that the quick search 

algorithm is not the most efficient one in time 
complexity. For instance, the KMP algorithm 
only costs )( nm +Ο time in searching phase. 

In the procedure of encoding pattern P  and 

text T  into enP′  and enT ′ , many numbers 

which exist in enT ′  aren’t in the alphabet of 

enP′ . In bad-character shift table, those numbers 

can shift more steps than English character. It is 
the reason that we choose the quick search 
algorithm in our searching phase. 

2.2.3 The Examination Phase 

 After the searching phase, we find all 
occurrences of enP′  in enT ′ . In examination 

phase, we need to know the corresponding 

position of T  which should be examined.  
We define a function )(iPos  to calculate the 
corresponding position of T ′  while enP′  
matches at position i  of enT ′ . The function 

)(iPos  is denoted as following: 

number. a is )( if ,
character. a is )( if ,

)(
1

))((    where,))(()(
xT

xT
xT

xTfxTfiPos
en

en

en
en

ix
en ′

′





′
=′′= ∑

≤
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 When enP′  matches at position i  of enT ′ , 
the function )(iPos  accumulates the value 
from the first character of enT ′  to the character 
of position i . If )(xTen′  is a character, add 1 
to the function; otherwise add )(xTen′  to the 

function. Consider the example mentioned in 
Section 2.2.2, the text aaaaaTen 6241=′ , 
suppose a match occurs at position 5 of enT ′ . 
The function (5)Pos  = ( (1))enf T ′  + 

( (2))enf T ′  + ( (3))enf T ′  + ( (4))enf T ′  + 
( (5))enf T ′  = 814111 =++++ . 

 The function )(iPos  is to calculate the 

position of T ′  that the first character of P′  
should be aligned, not to calculate the position 

of T  which P  should be aligned.  Because 
we delete all characters until the encoding 
character x  when P  encoded into P′ . We 
don’t know how many characters are deleted by 

)(iPos . If we want to know the position that 

P  should be aligned to T , some shift value 
should be considered. Let q  denote the 

leftmost side position of x  in P , r denote 
the leftmost side position of x  in T .  Thus, 

we align P  to match with 

1)(,)( −+−+−+ mqiPosrqiPosrT . 

 Given a complete example: Let 

abaabataaatabaaatbaaaatT =  and 

aaatababaP = .  After the searching phase, 
we have bbbbTen 176=′ , bbPen 1=′  and 

9=m . We also record that enP′  occurs at 
position 5 of enT ′ . The leftmost side position of 

b  in P  is 6, that is 6=q . The most left 

side position of b  in T  is 5, that is 5=r . 
The function 

(5))((4))((3))((2))((1))((5) enenenenen TfTfTfTfTfPos ′+′+′+′+′=  

= 1617161 =++++ .  As shown in Figure 

6(a), P′  occurs at position 16 of T ′ . We 
need to examine whether P  occurs at position 
( ) ( ) 156-165-(5) =+=+ qPosr  of T  or 

not. That is, we need to align P  to match with 

the substring 23,15t . We align P  with 15t  to 

verify whether there exists an exact string 
matching. Figure 6(b) shows that a match really 
occurs at 15t . 

 Figure 6(c) shows another example, where 
cgaaccctggtatctcagtcaT =  and 

agaccgaccP = .  We can see that 
ggggTen 63=′  and ggPen 3=′  and 9=m . 

Suppose from the searching phase, we know 
that enP′  occurs at position 1 of enT ′ . 

1)1( =Pos , 2=q  and 7=r . We align P  

to match with 14,6t . We align P  with 6t  to 

verify whether there exists an exact string 
matching or not. And a mismatch occurs at 6t . 

2.2.4 Analysis of Complexities 

In this following, we analyze the time and 
space complexity of the proposed algorithms. In 
the encoding phase, the time complexity of 
encoding a pattern string P  is )(mΟ  and 
encoding a text string T  is )(nΟ . Assume 

that the character x  is the best choice. We 
encode P  and T  into enP′  and enT ′  
respectively and this step can be done by linear 
scan. So we can see that the time complexity of 

encoding string P  and string T  is 
)( nm +Ο . The space complexity is the same as 

time complexity, )( nm +Ο . 

In the searching phase, we construct a 

table: bad-character table. Let ∑  denote the 
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alphabet size. The size of the bad-character 

table is ∑ . It is obviously that the time 

complexity of generating the table is 

)( ∑+′Ο enP  and its space complexity is 

)( ∑Ο .  Then we scan the current window 

from left to right. When a mismatch occurs, we 
look up the bad-character table to decide our 
shift. The worst case of the time complexity in 

this phase is )( enen TP ′×′Ο . 

 In the examination phase, the function 
)(iPos  is used to calculate the corresponding 

match position in T . The function scans string 

enT ′  and accumulates its value until position i  

which is obtained from the searching phase. It 
is obviously that the time complexity in this 

phase is )( enT ′Ο . 

In the following, we consider the 
compression ratio of our compression scheme. 
In general case, assume that the probability of 
each c  in T  and in P  is equal for all 

Σ∈c . Let α  denote the frequency of each 
c  in T , β  denote the frequency of each c  

in P . Because we assume that the frequency 
of each c  is equal, α  can also be 

represented as 
T 

 
Σ  

, and β  as 
P 

 
Σ  

. 

 Suppose we select character x  to encode 

enP′  and enT ′ , where the number of x  in T  
is α  and the number of x  in P  is β . 
Then, the number of numerals in enT ′  is at 
most 1−α , and that in enP′  is at most 1−β . 

Thus 12)1( −=−+≤′ αααenT  and  

12)1( −=−+≤′ βββenP . By definition, 

Σ≥ α  T  and Σ≥ βP . Therefore, we have 

Σ
=

Σ
≅

Σ
−

≤
′ 2212  

α
α

α
α

T
Ten  and 

Σ
=

Σ
≅

Σ
−

≤
′ 2212  

β
β

β
β

P
Pen . 

 This analysis shows that our 
compression scheme is quite effective. For the 
DNA type data, both text and pattern are 
compressed to half of their sizes. If the data are 
English language sentences, both text and 
pattern will be compressed to roughly 7.7% of 
their original sizes. 

3. The Experimental Results 

In this section, we conducted several 
experiments to demonstrate the performance of 
our algorithm. These experiments run on a 
Pentium IV 3GHz with 1GB of RAM under 
Windows XP. We make comparison with two 
well-known algorithms (i.e., KMP algorithm [4] 
and BM algorithm [1]) both in the comparison 
times and the compression ratio. All compared 
algorithms are implemented in the C++ 
programming language. 

We classify the pattern into DNA type 
data and natural language data according to the 
size of pattern. Each experiment randomly 
selects a part of a DNA sequence and an 

English article with length 5102×  to be text 
T , and a part of it with length 10, 20, 30, 40 
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and 50 to be pattern P . Each result is the 
average of 100 experiments with different P ’s 
and T ’s. The x-axis represents the length of 
pattern. The y-axis represents the comparison 

times in 5102×  text length. 
(1) DNA type data 

We show the experiments with alphabet 

size is 4 (i.e., 4=∑ ), and the patterns of 

sizes are 10, 20, 30, 40 and 50. Figure 7 shows 
the experimental result. 

It is easy to see that our methodology has 
improved the comparison time to a large extent. 

For instance, when 50P =  and 

200000T =  in Figure 7(a), the average 

comparison times of KMP algorithm, BM 
algorithm and our encoding method are 
231181ms, 44875 ms and 9160 ms. In other 
words, the comparison time of our encoding 
method is only 3.96% and 20.4% that of KMP 
algorithm and BM algorithm respectively. 
Furthermore, with the same lengths of pattern 
and text, Figure 7(b) also shows that the pattern 
is shortened to 24% of its original length and 
the text is shortened to 38.1% of its original 
length. Thus, the exact matching can be done in 
a much shorter time. 
(2) Natural language data 

Figure 8 shows the experiments with 

alphabet is 26 (i.e., 26=∑ ). When 50P =  

and 200000T =  in Figure 8(a), the average 

comparison times of KMP algorithm, BM 
algorithm and our encoding method are 201892 

ms, 12769 ms and 5200 ms respectively. That is, 
the comparison times of our encoding method 
can be reduced to 2.57% and 40.7% that of 
KMP algorithm and BM algorithm respectively. 
With the same lengths of pattern and text, 
Figure 8(b) also shows that the pattern is 
shortened to 6% of its original length and the 
text is shortened to 12.4% of its original length. 
Hence, our encoding method is much superior 
to these two well-known algorithms. 

4. Concluding Remarks 

In this paper, we have proposed an 
encoding approach to compress pattern and text.  
Then the quick search algorithm is used to 
locate all occurrences of pattern in text.  Since 
the input is shorter than the original one, it is 
obvious that the matching will be much faster. 
An examination method is also introduced to 
calculate the corresponding position of the 
original pattern and text while an exact match 
occurs. Furthermore, based on the experimental 
results, the proposed encoding algorithm is 
quite efficient for different type data, especially 
in natural language data. 
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ω  c a t * 

shift 3 2 1 8 

(a) After the pre-processing phase, the bad-character table. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

T= a t c a c a t c a c a a g t c a 

                 

P= a t c a c a t          

                 

   P= a t c a c a t       

(b) During the searching phase, an exact match occurred. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

T= a t c a c a t c a c a a g t c a 

                 

   P= a t c a c a t       

                 

     P= a t c a c a t     

(c) During the searching phase, a mismatch occurred. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

T= a t c a c a t c a c a a g t c a 

                 

     P= a t c a c a t     

                 

             P= a t c 

(d) The completion of the searching phase. 

Figure 1: An illustration of the quick search algorithm for aagtcatatcacatcacT =  and 

atcacatP = .  
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enT ′ = d 4 d 4 d 

      

enP′ = d     

   d   

     d 

(a) The occurrence of enT ′  and enP′ . 

T = d a c b c d c b a c d a a c 

               

P = b c d c b c c        

               

  P = b c d c b c c     

               

      P = b c d c b c c 

(b) The occurrence of T  and P . 

Figure 2: An illustration of Case 1 for ( ) 1fre x = . 
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 1 2 3 4 5 6 7 8 9 10 

enT ′ = a a 2 a a 9 a a a a 

           

enP′ = a a         

    a a      

       a a   

        a a  

         a a 

(a) The occurrence of enT ′  and enP′ . 

 0 1 2 3 4 5 6 7 8 9 1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

T= a a c b a a c c b c b b b e d a a a a d 
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(b) The occurrence of T  and P . 

Figure 3: An illustration of Case 2 for 2)( =xfre  and 2, =rlP . 
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enT ′ = c 3 c c 1 c 

       

enP′ =   c c 1 c 

(a) The occurrence of enT ′  and enP′ . 
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(b) The occurrence of T  and P . 

Figure 4: An illustration out of Case 1 and Case 2. 
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(a) The bad-character table. 

 

 

 

(b) A mismatch occurred. 

 

 

 

 

(c) The matching phase terminated. 

Figure 5: An illustration of the searching phase for ccabbabP = , ' 'x a=  and 

abbccccabbababcccabbT = .  

 

enP′ = a 2 a 

    
ω  a 2 * 

shift 1 2 4  

 1 2 3 4 5 6 7 8 9 

enT ′ = a 1 a 4 a 2 a 6 a 

          

enP′ = a 2 a       

 1 2 3 4 5 6 7 8 9 

enT ′ = a 1 a 4 a 2 a 6 a 

          

   enP′  = a 2 a   
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

T ′ = b a a a a t a b a t a a a t a b a b 

                   

              P′ = b a b 

(a) An occurrence of P′  in T ′ . 
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(b) An examination of P  in T . 
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(c) An examination of P  in T . 

Figure 6: An illustration of the examination phase. 
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 (a) The comparison times.  

P  T  enP′  enT ′  ℜ of P  ℜ of T  
10 200000 4 82362 40% 41.1% 
20 200000 4 82954 20% 41.4% 
30 200000 7 82588 23.2% 41.2% 
40 200000 11 77322 27.5% 38.6% 
50 200000 12 76321 24% 38.1% 

ration compressio:ℜ  

(b) The compression ratio. 

Figure 7: The experiment of DNA type data for comparison times and the compression ratio. 
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Text=200000 
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Pattern = 10 204315 29583 10831 
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(a) The comparison times. 

 

P  T  enP′  enT ′  ℜ of P  ℜ of T  
10 200000 4 46551 40% 23.2% 
20 200000 3 35042 15% 17.5% 
30 200000 3 31203 10% 15.6% 
40 200000 3 27329 7.5% 13.6% 
50 200000 3 24800 6% 12.4% 

ration compressio:ℜ  

(b) The compression ratio.  

Figure 8: The experiment of natural language type for comparison times and the comparison ratio. 

 


