
AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

Fast String Matching Algorithms Based Upon the

Data Encoding Scheme
Tai-Ye Huang#, Hui-Min Chen*, Chien-Hung Huang#, R. C. T. Lee*, Hsien-Yang Liao#

Department of Computer Science and Information Engineering, National Formosa University,

No.64, Wunhua Rd., Huwei Township, Yunlin County 632, Taiwan, R. O. C.
1chhuang@nfu.edu.tw

* Department of Computer Science, National Chi Nan University

No.1, University Rd, Puli, Nantou County,54561 Taiwan, R.O.C.

Abstract—The string matching problem is to
find all locations of a pattern string with
length m in a text with length n . In this
paper, we propose a new encoding method to
shorten both the lengths of pattern and text,
by substituting the substring between a
special character by its length. Then we use
the quick searching algorithm to solve the
string matching problem on the encoded
pattern and text [9]. By using the encoding
method, the pattern and text can be

shortened by a factor of, about,
Σ
2

, where

∑ denotes the size of the alphabet set

containing all characters of text and pattern.

In practice, it performs better than
Σ
2

. For

instance, using an English sentence pattern,
of length 50, as a pattern and a text, of length
200000, in average, they are shortened to
about, respectively, 6% and 12.4% of the
original sizes. Thus, the exact matching can
be improved in a much shorter time.

Keywords—computational biology, algorithm,
string matching, sliding window, data
encoding scheme.

1. Introduction

String matching is a fundamental
operation, as such it has many practical
applications in computational biology, data
mining, intrusion detection, and data
compression [5, 7].

The string matching problem is defined as
follows. Given a text string 1 2... nT t t t= of
size n , a pattern string 1 2... mP p p p= of

size m , and the alphabet set Σ containing all

characters of text T and pattern P , our
purpose is to find all occurrences of P in T .

Efficient string matching algorithms have
been proposed by many researchers [1-4, 6,
8-9]. Two well-known optimal, (+)m nΟ , time

algorithms were proposed by Boyer et al. [1]
and Knuth et al. [4]. Several string matching
algorithms [2-3, 6, 8-9] were proposed to
improve the hidden constant, by orders of
magnitude.

In this paper, we first propose a new

mailto:chhuang@nfu.edu.tw

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

encoding method to shorten both the lengths of
pattern and text in)(nm +Ο . Then we solve the

string matching problem by using the quick
searching algorithm on the encoded pattern and
text. To evaluate the effectiveness of the
proposed algorithms, we implemented a
prototype and compare it with two well-known
algorithms [1, 4]. The results show that our
algorithm is significantly better than the
existing ones.

2. The Algorithms

2.1 The Quick Search Algorithm

 The quick search algorithm was proposed
by Sunday [9] and it is similar to the Horspool
algorithm [2]. Let ω be a character in the

alphabet. The quick search algorithm consists
of the following two phase. In the
pre-processing phase, we construct a
bad-character table which is used to shift

pattern P . The bad-character table is used to
find whether there exists a rightmost character

ω in P which is equal to the character mjt +

in a partial window mjj tt ++ ...1 . If the character

ω exists in P , we record the position of ω
from the right end in the table. If ω does not

exist in P , we record it as 1+m .

In the searching phase, compare text T
and pattern P from left to right. Assume that

ip is aligned to jt . If a match occurs in P ,

output the position i and look up the character

mjt + in the bad-character table to decide the

number of steps to shift. If a mismatch occurs

in P , we always look up the character mjt +

in the bad-character table to decide the number
of steps to shift.

In Figure 1, we show an example of the
quick search algorithm, where

aagtcatatcacatcacT = and atcacatP = .

First, in the pre-processing phase, we compute
the bad-character table as shown in Figure 1(a).

Then, in the searching phase, we scan text T
and pattern P from left to right. Because a
match occurs, we output the position 1 and shift
P 3 positions by looking up character 8t of

the bad-character table. This case is illustrated

in Figure 1(b). We continue to scan the text T
and the pattern P from left to right. When a
mismatch occurs in 2p , we shift P 2
positions by looking up character 11t of the

bad-character table. This case is also illustrated
in Figure 1(c). By the same measure, a
mismatch occurs in 7p , shift P 8 positions
by looking up character 13t . If the window

surpasses the length of text T , we stop the
comparing. This case is illustrated in Figure
1(d). The pre-processing phase, it costs

)(σ+Ο m time, where σ is the number of

alphabets in pattern P , the searching phase,
takes)(mnΟ time.

2.2 The Encoding Algorithms

 In this section, we propose a new approach
to solve the string matching problem. The main
idea of our algorithm is to shorten both the

lengths of the pattern P and the text T . Note
that the both lengths of encoded pattern P
and text T are much shorter than the original
ones in general case. Then apply any string

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

matching algorithms [1-4, 6, 8-9] to solve the
string matching problem on the encoded pattern
and text. Since the string lengths are reduced, it
is obvious that the exact matching of pattern

P will be much faster. Hence our approach
has the following properties:

1. The substring 'P is coded in such a way
that it becomes much shorter than P .
The coded 'P is denoted as enP′ .

2. The text T will also be coded by using
the same coding method to code 'P .
The coded text is denoted as enT ′ . It will
be shown that enT ′ is also shortened and
will contain enP′ if T contains P .

3. Since both enT ′ and enP′ are short now, it
becomes easy to determine whether enP′
occurs in enT ′ .

Our encoding algorithm contains three
phases: the encoding phase, the searching phase
and the examination phase. For the sake of
completeness, the detailed algorithm (DEA) is
listed in the following.

Algorithm DEA

Input: mn pppPtttT ...,... 2121 ==

Output: All occurrences of P in T .
Step 1: /The Encoding Phase/

Step 1.1: Choose a character x whose

frequency in P is as small as
possible and exclude the following
cases.
Case 1: x only appears once in

P .
Case 2: x appears twice and is

adjacent in P .
If there is no such x, randomly

select a character to be x .

Step 1.2: Let enP′ be the longest substring

of P that begins with x and
ends with x . If the length

of the substring between two
nearest x is greater than 0,

replace the substring with its
length.

Step 2: /The Searching Phase/
Use the quick search algorithm to find
all occurrences of enP′ in enT ′ from

left to right. Record the position i ’s
where enP′ occurs in enT ′ .

Step 3: /The Examination Phase/
Let q denote the leftmost side

position of x in P , r denote the
leftmost side position of x in T , and

)(iPos denote the corresponding
position of T ′ while enP′ matches at
position i of enT ′ .

For every position i , align P with

the substring 1)(,)(−+−+−+ mqiPosrqiPosrT

to examine whether there exists an
exact matching or not.

2.2.1 The Encoding Phase

The first step of the encoding phase is to
select a character x from some alphabet set of

P , and we delete all characters to the first x

in P and all characters to the right of the last
x in P . Then the result is a substring
enclosed by x . This substring must be of the

form of 121
21

+ka
k

aa xSSxSx L for some k

where ix denotes a string of i sx ' , and the
length of iS could not be zero. We show an

example of how to encode the pattern P . Let

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

edrcabaacdstaaceP = . Suppose we select
character c , then we can get

rccdstaaceedP =′ .

The second step is to encode P′ into a
shorter string enP′ . As mentioned above, the

form of P′ is 121
21

+ka
k

aa xSSxSx L , let id

denote the size of iS . Then

121
21

+=′ kk a
k

aaa
en xdxdxdxP L . If the length

of iS is zero, we don’t record it in enP′ . For

example, we select a substring

ercddcstddacceP =′ , and we have
ddddPen 73=′ .

Finally, we use the same method to
encode T . Suppose x is the character that

we select to encode string P . Let T ′ be a
substring of text T , and enclosed by x . If
character x doesn’t exist in T , T ′ shall be
empty. If character x can be found in T , we

encode T ′ as the form of

121
21

+kk a
k

aaa xdxdxdx L , which is enT ′ .

We show an example, where
aactcgacgctcactacgactT = and

actacgactP = . Suppose we select a
character t in P . Then tacgactP =′ and

ttPen 5=′ . We also obtain
cgacgcttacgactactT = and ttttTen 625=′

by using the same encoding method.
Now we describe the conditions that how

we select an appropriate character to encode P
and T into enP′ and enT ′ . Let)(xfre

denote the frequency of character x in P .
We select a character x with the minimal
frequency. As long as)(xfre conforms with

the following two cases, the character x

should be abandoned.
Case 1: 1)(=xfre .

Case 2: 2)(=xfre and 2, =rlP ,

where l = the leftmost position of
x in P and
r = the rightmost position of x in

P .
We illustrate these two cases in the

following:
Case 1: 1)(=xfre .

If we select the character whose
1)(=xfre , the length of string enP′ will be

equal to one. It is like that we just take one

character of pattern P to compare with text
T . Of course, the exact matching probability
will be larger than the probability of taking the

entire P to compare with T . But in reality,
string P and T may not have so many
matches. Let’s take an example as shown below,
we are given a pattern bcdcbccP = and

daacdacbcdcbacT = . We have 1)(=dfre ,

then select it as our encoding character. In
Figure 2(a), we can see that enP′ occurs three
times in enT ′ . But P does not exist in T at

all, as shown in Figure 2(b).

Case 2: 2)(=xfre and 2, =rlP .

In Case 2, the length of string enP′ will

become two. The exact matching probability
will rise if we just take a substring with length

two of P instead of the complete pattern P
to compare with text T . The result is not
satisfactory. We hope that the length of enP′ is

moderate, not too short or too long. If the length
is very short, it will rise the probability of
getting the wrong matching; if the length is

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

very long, it will rise the comparison times.
Both of them are not we want to see. We show
an example where baaccbcbbbP = and

bbbedaaaadaacbaaccbcT = . In Figure 3(a),

enP′ occurs 5 times in enT ′ . But in reality, P

only occurs one time in T , as shown in Figure
3(b).

If we select the character c which

doesn’t obey Case 1 and Case 2 in the same P
and T , where baaccbcbbbP = and

bbbedaaaadaacbaaccbcT = , the occurrence
of enP′ in enT ′ reduces to one, as shown in

Figure 4(a). In Figure 4(b), we can see that the

occurrence of P in T is really one time. The
case of wrong matching is reduced now.

2.2.2 The Searching Phase

After the encoding phase, T and P
have been encoded to enT ′ and enP′ . In the

searching phase, we need to find all
occurrences of enP′ in enT ′ . This is a string

matching problem. Any string matching
algorithms [1-4, 6, 8-9] can be used. But, since
both text and pattern strings are reduced, we
recommend to use the quick search algorithm
[9]. Hence, the time complexity is

)(enen TP ′×′Ο , better than compare the entire

pattern P with text T , whose time

complexity is)(TP ×Ο .

We show an example with ccabbabP =
and abbccccabbababcccabbT = in Figure
5. First, if we select “ a ” which has the smallest

frequency in P , we have abbaP =′ ,
aaPen 2=′ and aaaaaTen 6241=′ . The

bad-character table can be obtained as shown in

Figure 5(a). Then, we scan text enT ′ and
pattern enP′ from left to right. Figure 5(b)

shows when a mismatch occurs in position 2,
we shift enP′ 4 positions by looking up
position 4 of enT ′ of bad-character table. We
continue to scan text enT ′ and pattern enP′

from left to right. When a match occurs, we
output the position 5 and move enP′ 4 steps to

the right. The position is out of the window,
terminate the matching phase. This case is
shown in Figure 5(c).

Note that there are many algorithms which
can be used to locate all occurrences of enP′ in

enT ′ . We also admit that the quick search

algorithm is not the most efficient one in time
complexity. For instance, the KMP algorithm
only costs)(nm +Ο time in searching phase.

In the procedure of encoding pattern P and

text T into enP′ and enT ′ , many numbers

which exist in enT ′ aren’t in the alphabet of

enP′ . In bad-character shift table, those numbers

can shift more steps than English character. It is
the reason that we choose the quick search
algorithm in our searching phase.

2.2.3 The Examination Phase

 After the searching phase, we find all
occurrences of enP′ in enT ′ . In examination

phase, we need to know the corresponding

position of T which should be examined.
We define a function)(iPos to calculate the
corresponding position of T ′ while enP′
matches at position i of enT ′ . The function

)(iPos is denoted as following:

number. a is)(if ,
character. a is)(if ,

)(
1

))((where,))(()(
xT

xT
xT

xTfxTfiPos
en

en

en
en

ix
en ′

′

′
=′′= ∑

≤

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

 When enP′ matches at position i of enT ′ ,
the function)(iPos accumulates the value
from the first character of enT ′ to the character
of position i . If)(xTen′ is a character, add 1
to the function; otherwise add)(xTen′ to the

function. Consider the example mentioned in
Section 2.2.2, the text aaaaaTen 6241=′ ,
suppose a match occurs at position 5 of enT ′ .
The function (5)Pos = ((1))enf T ′ +

((2))enf T ′ + ((3))enf T ′ + ((4))enf T ′ +
((5))enf T ′ = 814111 =++++ .

 The function)(iPos is to calculate the

position of T ′ that the first character of P′
should be aligned, not to calculate the position

of T which P should be aligned. Because
we delete all characters until the encoding
character x when P encoded into P′ . We
don’t know how many characters are deleted by

)(iPos . If we want to know the position that

P should be aligned to T , some shift value
should be considered. Let q denote the

leftmost side position of x in P , r denote
the leftmost side position of x in T . Thus,

we align P to match with

1)(,)(−+−+−+ mqiPosrqiPosrT .

 Given a complete example: Let

abaabataaatabaaatbaaaatT = and

aaatababaP = . After the searching phase,
we have bbbbTen 176=′ , bbPen 1=′ and

9=m . We also record that enP′ occurs at
position 5 of enT ′ . The leftmost side position of

b in P is 6, that is 6=q . The most left

side position of b in T is 5, that is 5=r .
The function

(5))((4))((3))((2))((1))((5) enenenenen TfTfTfTfTfPos ′+′+′+′+′=

= 1617161 =++++ . As shown in Figure

6(a), P′ occurs at position 16 of T ′ . We
need to examine whether P occurs at position
() () 156-165-(5) =+=+ qPosr of T or

not. That is, we need to align P to match with

the substring 23,15t . We align P with 15t to

verify whether there exists an exact string
matching. Figure 6(b) shows that a match really
occurs at 15t .

 Figure 6(c) shows another example, where
cgaaccctggtatctcagtcaT = and

agaccgaccP = . We can see that
ggggTen 63=′ and ggPen 3=′ and 9=m .

Suppose from the searching phase, we know
that enP′ occurs at position 1 of enT ′ .

1)1(=Pos , 2=q and 7=r . We align P

to match with 14,6t . We align P with 6t to

verify whether there exists an exact string
matching or not. And a mismatch occurs at 6t .

2.2.4 Analysis of Complexities

In this following, we analyze the time and
space complexity of the proposed algorithms. In
the encoding phase, the time complexity of
encoding a pattern string P is)(mΟ and
encoding a text string T is)(nΟ . Assume

that the character x is the best choice. We
encode P and T into enP′ and enT ′
respectively and this step can be done by linear
scan. So we can see that the time complexity of

encoding string P and string T is
)(nm +Ο . The space complexity is the same as

time complexity,)(nm +Ο .

In the searching phase, we construct a

table: bad-character table. Let ∑ denote the

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

alphabet size. The size of the bad-character

table is ∑ . It is obviously that the time

complexity of generating the table is

)(∑+′Ο enP and its space complexity is

)(∑Ο . Then we scan the current window

from left to right. When a mismatch occurs, we
look up the bad-character table to decide our
shift. The worst case of the time complexity in

this phase is)(enen TP ′×′Ο .

 In the examination phase, the function
)(iPos is used to calculate the corresponding

match position in T . The function scans string

enT ′ and accumulates its value until position i

which is obtained from the searching phase. It
is obviously that the time complexity in this

phase is)(enT ′Ο .

In the following, we consider the
compression ratio of our compression scheme.
In general case, assume that the probability of
each c in T and in P is equal for all

Σ∈c . Let α denote the frequency of each
c in T , β denote the frequency of each c

in P . Because we assume that the frequency
of each c is equal, α can also be

represented as
T

Σ

, and β as
P

Σ

.

 Suppose we select character x to encode

enP′ and enT ′ , where the number of x in T
is α and the number of x in P is β .
Then, the number of numerals in enT ′ is at
most 1−α , and that in enP′ is at most 1−β .

Thus 12)1(−=−+≤′ αααenT and

12)1(−=−+≤′ βββenP . By definition,

Σ≥ α T and Σ≥ βP . Therefore, we have

Σ
=

Σ
≅

Σ
−

≤
′ 2212

α
α

α
α

T
Ten and

Σ
=

Σ
≅

Σ
−

≤
′ 2212

β
β

β
β

P
Pen .

 This analysis shows that our
compression scheme is quite effective. For the
DNA type data, both text and pattern are
compressed to half of their sizes. If the data are
English language sentences, both text and
pattern will be compressed to roughly 7.7% of
their original sizes.

3. The Experimental Results

In this section, we conducted several
experiments to demonstrate the performance of
our algorithm. These experiments run on a
Pentium IV 3GHz with 1GB of RAM under
Windows XP. We make comparison with two
well-known algorithms (i.e., KMP algorithm [4]
and BM algorithm [1]) both in the comparison
times and the compression ratio. All compared
algorithms are implemented in the C++
programming language.

We classify the pattern into DNA type
data and natural language data according to the
size of pattern. Each experiment randomly
selects a part of a DNA sequence and an

English article with length 5102× to be text
T , and a part of it with length 10, 20, 30, 40

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

and 50 to be pattern P . Each result is the
average of 100 experiments with different P ’s
and T ’s. The x-axis represents the length of
pattern. The y-axis represents the comparison

times in 5102× text length.
(1) DNA type data

We show the experiments with alphabet

size is 4 (i.e., 4=∑), and the patterns of

sizes are 10, 20, 30, 40 and 50. Figure 7 shows
the experimental result.

It is easy to see that our methodology has
improved the comparison time to a large extent.

For instance, when 50P = and

200000T = in Figure 7(a), the average

comparison times of KMP algorithm, BM
algorithm and our encoding method are
231181ms, 44875 ms and 9160 ms. In other
words, the comparison time of our encoding
method is only 3.96% and 20.4% that of KMP
algorithm and BM algorithm respectively.
Furthermore, with the same lengths of pattern
and text, Figure 7(b) also shows that the pattern
is shortened to 24% of its original length and
the text is shortened to 38.1% of its original
length. Thus, the exact matching can be done in
a much shorter time.
(2) Natural language data

Figure 8 shows the experiments with

alphabet is 26 (i.e., 26=∑). When 50P =

and 200000T = in Figure 8(a), the average

comparison times of KMP algorithm, BM
algorithm and our encoding method are 201892

ms, 12769 ms and 5200 ms respectively. That is,
the comparison times of our encoding method
can be reduced to 2.57% and 40.7% that of
KMP algorithm and BM algorithm respectively.
With the same lengths of pattern and text,
Figure 8(b) also shows that the pattern is
shortened to 6% of its original length and the
text is shortened to 12.4% of its original length.
Hence, our encoding method is much superior
to these two well-known algorithms.

4. Concluding Remarks

In this paper, we have proposed an
encoding approach to compress pattern and text.
Then the quick search algorithm is used to
locate all occurrences of pattern in text. Since
the input is shorter than the original one, it is
obvious that the matching will be much faster.
An examination method is also introduced to
calculate the corresponding position of the
original pattern and text while an exact match
occurs. Furthermore, based on the experimental
results, the proposed encoding algorithm is
quite efficient for different type data, especially
in natural language data.

5. Acknowledgement

 This work is supported by the National
Science Council of R.O.C. under the grant of
NSC 97-2221-E-150-063.

References

[1] Boyer R. S. and Moore J. S., A Fast String
Search Algorithm. Communication of the
ACM, 1977; 20: 762–772.

[2] Horspool R. N., Practical Fast Searching

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

in Strings. Software-Practice &
Experience, 1980; 10: 501-506.

[3] Hume A. and Sunday D. M., Fast String
Searching. Software-Practice &
Experience, 1991; 21: 1221-1248.

[4] Knuth D. E., Morris J. H. and V. R. Pratt V.
R., Fast Pattern Matching in Strings. SIAM
Journal on Computing, 1977; 6(2):
323-350.

[5] Pevzner P. P. Computational Molecular
Biology-An Algorithmic Approach. MIT
Press, 2000.

[6] Raita T., Tuning the

Boyer-Moore-Horspool String Searching
Algorithm. Software - Practice &
Experience, 1992; 22(10): 879-884.

[7] Sayoood K. Introduction to Data
Compression. second edition, Morgan
Kaufmann, 2000.

[8] Smith P. D., Experiments With a Very Fast
Substring Search Algorithm. Software -
Practice & Experience, 1991; 21(10):
1065-1074.

[9] Sunday D. M., A Very Fast Substring
Search Algorithm. Communications of the
ACM, 1990; 33(8): 132-142.

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

ω c a t *

shift 3 2 1 8

(a) After the pre-processing phase, the bad-character table.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T= a t c a c a t c a c a a g t c a

P= a t c a c a t

 P= a t c a c a t

(b) During the searching phase, an exact match occurred.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T= a t c a c a t c a c a a g t c a

 P= a t c a c a t

 P= a t c a c a t

(c) During the searching phase, a mismatch occurred.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T= a t c a c a t c a c a a g t c a

 P= a t c a c a t

 P= a t c

(d) The completion of the searching phase.

Figure 1: An illustration of the quick search algorithm for aagtcatatcacatcacT = and

atcacatP = .

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

enT ′ = d 4 d 4 d

enP′ = d

 d

 d

(a) The occurrence of enT ′ and enP′ .

T = d a c b c d c b a c d a a c

P = b c d c b c c

 P = b c d c b c c

 P = b c d c b c c

(b) The occurrence of T and P .

Figure 2: An illustration of Case 1 for () 1fre x = .

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

 1 2 3 4 5 6 7 8 9 10

enT ′ = a a 2 a a 9 a a a a

enP′ = a a

 a a

 a a

 a a

 a a

(a) The occurrence of enT ′ and enP′ .

 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

T= a a c b a a c c b c b b b e d a a a a d

P= b a a c c b c b b b

 P= b a a c c b c b b b

 P= b a a c c b

(b) The occurrence of T and P .

Figure 3: An illustration of Case 2 for 2)(=xfre and 2, =rlP .

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

enT ′ = c 3 c c 1 c

enP′ = c c 1 c

(a) The occurrence of enT ′ and enP′ .

 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

T= a a c b a a c c b c b b b e d a a a a d

 P= b a a c c b c b b b

(b) The occurrence of T and P .

Figure 4: An illustration out of Case 1 and Case 2.

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

(a) The bad-character table.

(b) A mismatch occurred.

(c) The matching phase terminated.

Figure 5: An illustration of the searching phase for ccabbabP = , ' 'x a= and

abbccccabbababcccabbT = .

enP′ = a 2 a

ω a 2 *

shift 1 2 4

 1 2 3 4 5 6 7 8 9

enT ′ = a 1 a 4 a 2 a 6 a

enP′ = a 2 a

 1 2 3 4 5 6 7 8 9

enT ′ = a 1 a 4 a 2 a 6 a

 enP′ = a 2 a

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T ′ = b a a a a t a b a t a a a t a b a b

 P′ = b a b

(a) An occurrence of P′ in T ′ .

 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

T: a a a t b a a a a t a b a t a a a t a b a b a

P: a a a t a b a b a

(b) An examination of P in T .

 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

T: a t c t c a g t c a g a a c c c t g g t c

P: a g a c c g a c c

(c) An examination of P in T .

Figure 6: An illustration of the examination phase.

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

Length
Text=200000

KMP BM
Encoding
Method

Pattern = 10 232979 65986 22825

20 233615 55081 20110

30 229804 47987 12243

40 228902 45268 10885

50 231181 44875 9160

0

50000

100000

150000

200000

250000

10 20 30 40 50

pattern length

co
m

pa
ri

so
n

ti
m

es BM

KMP

Encoding

Method

 (a) The comparison times.

P T enP′ enT ′ ℜ of P ℜ of T
10 200000 4 82362 40% 41.1%
20 200000 4 82954 20% 41.4%
30 200000 7 82588 23.2% 41.2%
40 200000 11 77322 27.5% 38.6%
50 200000 12 76321 24% 38.1%

ration compressio:ℜ

(b) The compression ratio.

Figure 7: The experiment of DNA type data for comparison times and the compression ratio.

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

Length
Text=200000

KMP BM
Encoding
Method

Pattern = 10 204315 29583 10831

20 202376 18354 10126

30 202989 15356 7105

40 196612 13334 4712

50 201892 12769 5200

0

50000

100000

150000

200000

250000

10 20 30 40 50

pattern length

co
m

pa
ri

so
n

ti
m

es

BM

KMP

Encoding

Method

(a) The comparison times.

P T enP′ enT ′ ℜ of P ℜ of T
10 200000 4 46551 40% 23.2%
20 200000 3 35042 15% 17.5%
30 200000 3 31203 10% 15.6%
40 200000 3 27329 7.5% 13.6%
50 200000 3 24800 6% 12.4%

ration compressio:ℜ

(b) The compression ratio.

Figure 8: The experiment of natural language type for comparison times and the comparison ratio.

