
AIT 2009

Vision-Based Vehicle Detection based on Embedded
Systems

Ying-Che Kuo, Yen-Feng Li

Department of Electrical Engineering, National Chin-Yi University of Technology
35, Lane 215, Sec.1, Chung-Shan Rd., Taiping, Taichung, Taiwan. 411, R.O.C

kuoyc@ncut.edu.tw

 Institute of Electronic Engineering
 35, Lane 215, Sec.1, Chung-Shan Rd., Taiping, Taichung, Taiwan. 411, R.O.C

takolyf@gmail.com

Abstract— Over the last decade have seen
growing importance placed on research in
vehicle detection. While implementing the
vehicle detecting system, the space of the car
and the cost of the hardware platform are the
decisive consideration. In this paper, we
proposed a modified vehicle detection
algorithm to make it can be implemented on
the embedded platform. The embedded
platform is based on an INTEL XScale
PXA270 SoC and limited hardware resources.
An application program realizes the proposed
algorithm and integrates V4L2 and MiniGUI
open source codes under LINUX operating
system. The proposed algorithm verifies the
preceding vehicles driving on the highway at
daytime. In our experiments, the system can
correctly verify and track vehicles. And the
processing time of this system is less than the
human reaction time.

Keywords— Vision-based Vehicle Detection,
Embedded System.

1. INTRODUCTION

In recent years, there are many researches
studied in the preceding vehicle detection of
vision-based driving assistance system. The
vehicle detection in an image has two classes in
general. One class uses the fixed camera to take
the picture at a fixed place. The objects (vehicles)
are detected by using the last image frame to
deduct the present one. The applications of this
class include car license recognition and
intelligent transportation system (ITS). The other
class is a car-mounted image recognition system.
The image is captured by the car-mounted camera.
The scenery in front of the windshield of a car is
captured in an image. This system detects the
preceding vehicles by extracting many features of

a vehicle from the captured image. Our study is
classified to this type and mostly uses on the
driving assistance system.

Extraction of the vehicle characteristic is a very
important part in driving assistance system. Sun
et al. [1] proposed vehicle feature extraction and
classification method which using Gabor filter
and support vector machine (SVM). In the
proposed vehicle extraction algorithm, he used
genetic algorithms (GAs) to optimize filter banks,
and used clustering to find the filters that feature
parameters are similar, and deleted redundant
filter.

To detect the preceding vehicle, there are many
methods developed to extract the boundary lines
of the vehicle. In [2], they developed a symmetry
detection method to extract the boundary lines of
the preceding vehicle. A weighted sum of the
symmetry map was computed and the symmetry
axis was obtained by the analysis of horizontal
and vertical edges to verify the preceding
vehicles. Sun et al. [3] proposed multi-scale
driven hypothesis to extract the boundary lines of
the preceding vehicle. They computed the
horizontal and vertical profiles of the edge
images in different resolutions. And they
performed some analysis to find the highest peaks
to extract the preceding vehicle.

In [4] their detected vehicles using three
features: underneath (footprint), vertical edge
(profile), and symmetry property. They utilized
the Sobel edge operation to extract underneath
location and vertical edge profile. Based on the
symmetry property, they defined a window
whose size was according to the typical aspect
ratio of vehicles. Then they carried out the
symmetry operation and found the greatest
symmetry value in the area of window.

Betke et al. [5] utilized image binarization with
a threshold value to remove most noises of gray
level image. After image binarization, the high

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

light pixels were including light sources such as
the street lamp and car light. Then they found the
equidistant light source in pairs of movement.
Those light sources in pairs were vehicles.

Most vehicle detection researches utilize PC-
based framework to implement this system. The
drawback of such system is it needs a lot of
computing resources while processing the image.
In this paper, we propose some modifications of
the vehicle detection algorithm for daytime to
make this system can be developed in an
embedded platform.

2. VEHICLE DETECTION ALGORITHM

Fig. 1 The flow diagram of the vehicle detection

algorithm

In the proposed vision-based vehicle detection
system, an image is captured using a video
camera settled in a car. The camera is moving
with the car and the captured image may have
several preceding vehicles on the same image.
Recognizing objects with moving camera is much
more challenging than doing with a stationary
camera. Therefore, the foreground (the preceding

vehicles) needs to be distinguished from the
captured image. The procedures of our proposed
detection algorithm are shown in Fig. 1 and
mentions as follows.

2.1 Region of Interest
The image captured in front of the car usually

includes the sky, road and wayside scenery.
Some areas of the image are the unnecessary
information for detection. For examples, the
vehicle can not appear on the area of the sky and
the areas that close to our car body are
unnecessary too. So, we can designate a
particular area on the image where the vehicle
might appear. This area is commonly called ROI
(Region of Interest).

While recognizing the proceeding vehicles on
an image, we assume the shooting angle of the
camera is parallel to the sky line. Therefore, the
sky line will locate in the centre of the image in
the vertical direction in general. And we define
the sky line as (the top boundary of ROI). The
bottom boundary of ROI, named it , is
demarcated in ten meters in front of the car.

tY

bY

Fig. 2 ROI area and gray level operation

Consequently, the top and bottom boundaries

of ROI can all be labeled and shown in Fig.2.
Next, the color image in ROI area will be
transformed from RGB color space into JPEG
YCbCr color space. Equation (1) [6] mentions this
transformation.

 (1) 128 B 0.0813 -G 0.4187 - R 0.5 Cr
128 B 0.5 G 0.3313 -R 0.1687 - Cb

B 0.114 G 0.587 R 0.299 Y

+=
++=

++=

To simplify calculations and make it can be

implemented in an embedded platform with
limited resource, we only use the luminance
component (Y) of the image for subsequent

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

image processes. The result of the gray level
image is shown in Fig.2.

2.2 Profile and Characteristic of the
Vehicle Extraction

In the next process, we use Soble edge
detection [7] to strengthen the profiles of all
objects in the ROI area. A 3x3 Soble filtering
operation is described in Fig. 3 and the operation
formula is mentioned in (2).

(2) t)y s, f(x t)w(s, y) g(x,
a

a- s

b

b- t
∑∑
= =

++=

Fig. 3 A 3x3 Sobel filtering

After Sobel edge detection, profiles of objects

have already been strengthened. Then we process
the gray level image to be a binary level image by
binarization method with the Otsu's threshold
selection [8].

Otsu's threshold selection is one of binarization
method and adopted in this paper. Otsu's
threshold method counts each gray level
occurrence number in the image. At the
beginning, divide gray level of 0 to 255 into two
classes, and then calculates the appearance
probability of the two classes in the image. The
basic formula of probability is mentioned in (3).

(3) 1 P , 0 P ,
N
n P

L

1 i
ii

i
i =≥= ∑

=

 represents the number of gray levels, and
 represents the number of pixels. and

represent foreground and background of the two
classes respectively.

L
N 0C 1C

0ω and 1ω are the sums of

the probability of and . 0C 1C 0μ and 1μ are

the sums of the average of and . The

formulas of
0C 1C

0ω , 1ω , 0μ and 1μ are mentioned in
(4~7).

(7).
(k) - 1
(k) -

P i

)C | (iPr i

(6)
(k)
(k) P i

)C | (iPr i

(5) (k) - 1 P

)(CPr

(4) (k) P

)(CPr

T
L

1 k i 1

i

L

 1 k i
11

k

1 i 0

i

k

1 i
00

L

1k i
i

11

k

1 i
i

00

ω
μμ

ω

μ

ω
μ

ω

μ

ω

ω

ω

ω

==

=

==

=

==

=

==

=

∑

∑

∑

∑

∑

∑

+=

+=

=

=

+=

=

And then, calculate the variances 2

0σ and 2
1σ

of and respectively as follows. 0C 1C

(9) P) - (i

)C |(iPr) - (i

(8)
P

) - (i

)C |(iPr) - (i

1

i
L

1 k i

2
1

1

L

1 k i

2
1

2
1

0

i
k

1 i

2
0

0

k

1 i

2
0

2
0

ω
μ

μσ

ω
μ

μσ

∑

∑

∑

∑

+=

+=

=

=

=

=

=

=

Finally, 2

wσ is the multiplication of variances
and probabilities of the two classes and indicated
in (10). We find the minimum value of 2

wσ with
different values k (range from 0 to L). The value
k with the minimum value 2

wσ is thought to be
the Otsu’s threshold value.

(10) 2

11
2
00

2
w σωσωσ +=

Once the Otsu’s threshold value is got, all the

pixels in the image are segmented to one of the
two binary levels (0 or 255). The gray level of
pixel is set to 0 if it’s the primary gray level is
less than the threshold vale. On the contrary, set
to 255 if gray level is larger than the threshold
value. Fig. 4 is an example of the histogram

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

statistic of the gray levels in an image. Fig. 5 has
shown the result of the Sobel edge detection and
Otsu's threshold selection processing.

Fig.4 The histogram of gray level

Fig. 5 (a) the result of Soble edge detection, (b)
the result of Otsu's threshold selection method

2.3 Removal of the Lane Mark
There are some noises in ROI area of the

captured image we don’t want. It includes lane
mark and non-road scenery in the image. Lane
mark detection will be mentioned in this section,
and non-road scenery deletion introduced in the
next section. Since lane mark has the higher gray
level pixels comparing with that of the road. At
first, we take the gray levels of five pixels of road
at five different areas randomly. The average of
all of the five gray levels is the threshold for
dichotomizing all pixels in ROI area. The method
of binarization is to set pixel that has gray level
greater than the threshold as 255, set as 0 on the
contrary. Then we make dilation to the binarized
image. Fig. 6 is the result after binarization and
dilation processing.

In the next procedure, the lane mark is
removed through the following SUB operation.

if (E(x, y) == 255 && W(x, y) == 0)
 NLM(x, y) = 255;

else
 NLM(x, y) = 0;

E(x, y) indicates the pixel in the image that has
processed by Sobel edge detection and Otsu's
threshold selection method (shown in Fig. 5(b)).
W(x, y) indicates the pixel in the image that has
processed by binarization and dilation (shown in
Fig. 6(b)). Fig. 7 shows the result of this SUB
operation and the removal of the lane mark.

Fig. 6 (a) the result of binarization, (b) the result

of dilation

Fig. 7 Result of removal of lane mark

2.4 Lane Mark Detection and RAI Area
Produced

The image with no lane mark is obtained in the
previous section. But the image still includes non-
road noises in ROI area. Non-road scenery
normally appeared in the yellow-colored area in
Fig. 8.

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

Fig. 8 Non-road area indicated by yellow color

Fig. 9 describes the RAI area which is the area

excepted non-road area in ROI. The RAI area is
called Road Area Image and marked by green
color in Fig. 9.

Fig. 9 RAI area indicated by green color

To verify the RAI area, the lane mark needs to

be detected in advance. The procedures of lane
mark detection are described as follows and
shown in Fig. 10.

1) The start point of this detection is at the
center in horizontal direction and bY (the
bottom of ROI) in vertical direction.

2) Find the first bright pixel form the start
point toward both left and right sides in
horizontal direction.

3) Once the first bright pixels are found both
in left and right sides, recording the
positions of the found pixels.

4) If the bright pixel can not be found while
the horizontal position has already
surmounted last position that found in last
procedure, using one pixel inward of last
procedure in horizontal direction as this
record.

5) Move the start point to the center in
horizontal direction and one pixel
position toward tY (the top of ROI) in

vertical direction. Repeat step 2 to 4 until
tY is reached in vertical direction.

Fig. 10 Explanation of lane mark detection

method

Fig. 11 RAI mask of ROI

Fig. 12 RAI generation

The RAI area is between two parallel lane

marks, so we set all the pixels of RAI area with
gray level 255. The area outside of the RAI area
is no needs for vehicle detection, so set all the
pixels in this exclusive area with gray level 0.
Fig. 11 shows RAI mask that produced at lane
mark detection procedure. The non-road scenery
in the image will be removed by utilizing an
AND operation with no lane mark image and RAI
mask. Finally, only the scenery inside the RAI
area left. An example of this operation is shown
in Fig. 12. After these procedures, we obtained
the image that may include the vehicle footprint.

2.5 The Vehicle Footprint
In this paper, we focus on the preceding

vehicle detection. The preceding vehicle driving
at the same lane normally will appear in the RAI
area of the captured image. The purpose of Sobel
edge detection is to strengthen the profile of the
vehicles. And we can find out the bottom of

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

vehicle keeps very strong orthogonal information,
shown in Fig. 13, after Sobel edge detection and
binarization have been processed.

Fig. 13 Orthogonal information in the image

processed by Sobel edge detection and
binarization

In this section, we try to find the footprint of

the preceding vehicle in RAI area. The so-called
footprint is the image information on the vehicle
bottom. We can find the width of the vehicle with
the localization of the footprint, and define the
height of the vehicle with the width. First of all,
we calculate the number of pixels with gray level
255 in column order. Such a method can get a
histogram, the positions of the two highest peaks
among the histogram are the left and right
boundaries of the proceeding vehicle. Two
vertical lines pass through these positions are the
left and right boundaries of the
preceding vehicle and are shown in Fig. 14. The
same procedure is performed in row order. The
supreme peak in the histogram is found. And a
horizontal line passing through the supreme peak
position indicates the bottom of the vehicle .
Then the footprint of the preceding vehicle is
been designated.

)(VL)(VR

)(VB

After labeling the left, right, and bottom
boundaries of the vehicle, we define the height of
the vehicle is 0.75 times of its width. And then
the profile of the preceding vehicle is demarcated.

Fig. 14 Result of the footprint labeling

2.6 Verification of the Vehicle
The footprint that we found may not be a

vehicle. The symmetry of a vehicle usually is
used to verify the found footprint [4] in the
researches of vehicle detection. It utilizes the
symmetrical characteristic of a vehicle to find the
centre axle of the vehicle. The formula of
symmetry operation is mentioned following.

(11) S S(j)min and S(j)min arg j

| i) x, - Pc(j - i) x, Pc(j |

 S(j)

th
j

sym

H Ybc

Ybc i

2W /

1 x

k X

k -X j

r

l

<=

ΔΔ+

=

∑ ∑ ∑
+

= =Δ

Δ+

Δ=

S(j) is symmetry measure with the symmetry

axis located at x j= . and are the left and
right searching boundaries of the footprint.
is the bottom searching boundary of the footprint.
We Let width and
Height

lX rX

bcY

|X - X| W lr=
0.9W H = . The result after symmetry

operation shows in Fig. 15. If the symmetrical
axis is in the area of centre of the vehicle
footprint, then prove whether image area is a
vehicle.

Fig. 15 Result of symmetry operation

2.7 Vehicle Tracking
In the preceding sections, we have already

labeled the vehicle in the image. But, if every
image frame needs such heavy and complicated
image processing, it will cause the burden of
system certainly. To make the system can be
implemented in an embedded system, vehicle
tracking is adopted to reduce computing efforts.

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

Fig. 16 Relation between vehicle detection and

tracking

In this thesis, we utilize the area difference

average in vehicle tracking method. At first, store
vehicle image area into memory space after
vehicle detection. Then the image area of same
location in next frame deducts to previous image
area, and calculates absolute value of difference
and average value. Finally, check whether the
difference average is less than and equal to the
threshold value. If the difference average greater
than the threshold value, we carry on the vehicle
detection in the next frame. On the contrary, we
continue using the vehicle tracking. The relation
between vehicle tracking and vehicle detection
can be expressed with Fig. 16.

3. SYSTEM IMPLEMENTATION

Fig. 17 Embedded system development platform

3.1 System Overview
There are three parts of our implementation for

this system. It includes “hardware platform”,
“system program and device driver” and “user
application program”. The “hardware platform”

includes a INTEL XScale PXA270 SoC, 64M
bytes SDRAM, 32M bytes flash ROM, and a few
peripheral devices (e.g., TFT-LCD module,
Ethernet, AC97, UART, etc) in the hardware
platform (see Fig. 17).

TABLE 1

EXPLANATION OF LIBRARIES

Name
Of
Libraries

ANSI
C V4L2 MiniGUI

Explanation

Library
of
standard
C
language.

Access
video-
information
bit stream
of webcam.

Build and
construct
the GUI
interface.

The “system program” of the second part of in

our implementation includes boot loader,
Embedded Linux and cross compiler for system
program. The “device driver” can be divided into
two blocks. The first block is driver module of
LCD, it embeds in driver module group of
Embedded Linux, and we only need to start-up it
before cross compile. The second block is an
image capture driver; it is the UVC (USB Video
Camera driver). The UVC driver is a webcam
driver of LINUX. It make the user can use
webcam on LINUX platform by UVC driver.

Fig. 18 the software structure of the system

“User application program” includes two parts

of library and application program. Library
includes image capture library, GUI (Graph User
Interface) program library and ANSI C library
three components. Table 1 shows the specific
functions of these three components.

Application program was written by C
language and executed under LINUX operation
system. The functions of the designed application

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

program include image capture, vehicle image
process and GUI procedure. Fig. 18 shows the
software structure of our system.

3.2 Software Development
There are two essential steps to building and

constructing our system except the selection of
the hardware platform and operating system at
the beginning.

1) Image Capture in Embedded Linux: The
V4L2 [9] is an API for executing the image
capture function under LINUX. It only needs
hardware driver to offer input and output function
(ioctl) and makes the image capture programming
easily. Fig. 19 shows the operation procedures of
V4L2. We can use timer function of MiniGUI to
set up capture frame quantity in every second.

2) Building GUI Framework: At present time,
most embedded systems have a touch screen user
interface. We choose MiniGUI [10] open source
code to implement the graphic user interface
(GUI) for plentiful user operating interface. The
reason is not that MiniGUI has special fortes but
its code size is smaller than general GUI open
source code. The code size is one of the decisive
conditions while we implement an embedded
system. Besides, the system designer must also
consider the question in many aspects such as the
cost, hardware resource of the system and user’s
habit, etc.

Fig. 19 The operation procedures of V4L2

3.3 Condition and Restriction
Our proposed system is only applied for

driving on the highway at daytime. When the
speed of a vehicle equals to 100 kilometers per

hours, Fig. 20 shows the safe distance is 112
meters [11].

Fig. 20 The vehicle safe distance at 100

kilometers per hour

When the speed of a vehicle is reaching to 100

kilometers per hour, the vehicle moves 27.778
meters forward every second. On the emergent
occasions, the driver has only 0.828 seconds to
react and step on the brake pedal to stop. So our
system must runs within 0.828 seconds through
the image capture to sending the result warning
message. We use timer function of LINUX to
obtain our system processing time and shown in
Table 2. In our experiments, our system only
takes less than 0.4 seconds in each image
processing.

TABLE 2

SYSTEM PROCESS TIME
Range of

Sample Result
Image Capture

Time
Algorithm

Process Time
Maximum Time 192267 (μ sec) 299645 (μ sec)

Minimum Time 117263 (μ sec) 218862 (μ sec)

Average Time 136498 (μ sec) 244820 (μ sec)

4. EXPERIMENTATIONS AND RESULTS

In our experiments, for reducing the cost of
testing and ensuring the safety of personnel, a
camera is fixed in the test car and records the
various driving conditions on the highway. A film
recorded by the test car is used for testing in
laboratory. In our laboratory, the film is played
on a screen to imitate the driving conditions on
the highway. The proposed system is
implemented and shown in Fig. 21. The camera
of the proposed system captures the image from
the screen. And the proposed algorithm detects
the vehicles in the captured image.

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

Fig. 21 The system mechanism structure

In Fig. 22, a tracked black vehicle is indicated

by a yellow-colored frame. Fig. 23 shows a white
vehicle is tracked in the highway ramp. Fig. 24
shows the tracking result of heavy goods trunk
and bus. Because of the width and height are
different from general vehicle, so the system is
unable to label the image area of heavy trunk
completely.

Fig. 22 Result of tracked black vehicle

Fig. 23 Result tracked the white vehicle in the

freeway ramp

Fig. 24 Track of heavy goods vehicle and bus

5. CONCLUSION

In this paper, we proposed a modified vehicle
detection algorithm to make it can be
implemented on the embedded platform. The
embedded platform is an INTEL XScale PXA270
SoC based platform. It has limited resources and
satisfies the cost-effective consideration.

The proposed algorithm verifies the preceding
vehicles driving on the highway at daytime. In
our experiments, the system can correctly extract
and track vehicles. And the processing time of
this system is less than the human reaction time.
This makes our proposed system more close to
commercial products.

REFERENCES

[1] Z. Sun, G. Bebis, and R. Miller, On-road
vehicle detection using Gabor filters and
support vector machines, International
Conference on Digital Signal Processing,
Greece, July, 2002.

[2] A. Bensrhair, M. Bertozzi, A. Broggi, P.
Miche, S. Mousset, and G. Toulminet, A
cooperative approach to vision-based
vehicle detection, In Proc. ITSC, Japan,
October 2001.

[3] Z. Sun, R. Miller G. Bebis and, D. DiMeo, A
real-time precrash vehicle detection system,
Applications of Computer Vision, 2002.
(WACV 2002).

[4] S. S. Huang, C. J. Chen, P. Y. Hsiao, and L.
C. Fu, On-board vision system for lane
recognition and front-vehicle detection to
enhance driver's awareness, in Proc. IEEE
Int’l Conf. on Robotics and Automation,
New Orleans LA, Apr.26 - May 1, 2004.

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

[5] M. Betke, E. Haritaoglu and L.S. Davis,
Real-time multiple vehicle detection and
tracking from a moving vehicle, Machine
Vision and Applications, pp. 69-83, 2000.

[6] E. Hamilton, JPEG File Interchange Format,
C-Cube Microsystems, September, 1992.

[7] R. C. Gonzalez and R. E. Woods, Digital
Image Processing, Prentice-Hall, Inc., 2002.

[8] N. Otsu, A Threshold Selection Method from
Gray-Level Histograms, IEEE Transactions
on Systems, man, and cybernetics, vol.
SMC-9, no.1, January 1979.

[9] M. H. Schimek. (2008) V4L2 API
Specification. [Online]. Available:
http://v4l2spec.bytesex.org/

[10] (2008) Beijing Feynman Software
Technology Co., Ltd. [Online]. Available:
http://www.minigui.com/

[11] (2008) Ministry Of Transportation and
Communications R.O.C. [Online]. Available:
http://www.motc.gov.tw/motchypage/safe/sp
eed_001_4.htm

2009 International Conference on Advanced Information Technologies (AIT)

