32 位元低面積先進加密晶片實作

張肇軒 國立高雄第一科技大學 碩士

e-mail:

國立高雄第一科技大學 助理教授 e-mail:

陳銘志

u9654805@ccms.nkfust.edu.tw

mjchen@ccms.nkfust.edu.tw

摘要

在這篇論文中,我們提出一個有效率的共 同子表示消去演算法(簡稱CSE)來縮減AES 轉 换子函數中面積的耗費,而一個新的 CSE 演算 法是應用在實現 AES 轉換子函數中可以化成 位元階層的表示法上,我們利用 CSE 演算法實 作出一顆 cell-based 的低面積 AES 晶片,和先 前的設計比較在面積的改善上有明顯降低許 多。

關鍵詞:AES,CSE,VLSI,Chip

1.前言

Rijndael 區塊加密演算法被選擇當作新一 代的加密標準(AES)取代先前的資料加密標準 (DES),此演算法為對稱區塊加密而處理資料 區塊為 128 位元由 4x4 位元組矩陣組成, 叫做 state, 一個 state 的運算會有 10、12、14 個回 合依據不同的金鑰長度 128、192、256 位元。 加密過程包含四個轉換 SubBytes(SB), ShiftRows(SR) , MixColumns(MC) ,和 AddRoundKey(ARK),另外需要 KeyExpansion 用來產生每一回合所需要的回合金鑰給 ARK,圖.1(a)為AES演算法加密結構,首先初 始金鑰先跟明文 XOR,接著一序列的轉換。當 產生最後一回合的結果後即為密文。直接解密 演算法如圖.1(b)產生顛倒的資料程序且其四個 轉換為原本的反相, InvSubBytes(ISB), InvShiftRows(ISR) , InvMixColumns(IMC), 和 AddRoundKey(ARK) •

藉由利用 CSE 演算法在不同的階層上(如 結構階層、位元組階層或是位元階層),實現 AES 的硬體複雜度可以大大地縮減。和先前的 設計比較起來,此篇論文提出一個新的位元階 層 CSE 演算法來實現更有效率的 AES 架構。

此篇論文第二部份介紹我們所採用的 32 位元 AES 的架構,第三部份介紹我們所提出的 一個新的位元階層子結構分享方法,第四部份 是實作晶片結果的比較,第五部份則是結論。

圖.1 AES (a) 加密和 (b) 直接解密

2.32 位元 AES 各架構說明

2.1 AES 整體架構

在整個 AES 部份我們實現了兩種架構, 分別是 AES(加密&直接解密)如圖.2 和 AES(加 密&改良式解密), 經由 Synopsys 公司推出的 Design Compiler 可以看出實際合成的電路面 積,而經過我們比較之後,AES(加密&直接解 密)的面積會比 AES(加密&改良式解密)來的 小,因此在最後選擇 AES(加密&直接解密)。 AES(加密&改良式解密)因為加密和解密的流 程是一樣的,在 SubBytes 和 MixColumns 有部 份電路可以共用藉此來降低面積花費,但是在 KeyExpansion 的部份必須再加入一份 InvMixColumns 的硬體面積,而 IMC 這部份面 積是很大的,因此比較起來,AES(加密&直接 解密)的面積會比較小,在此篇論文當中所討論 和實現的結構都以AES(加密&直接解密)為主。

圖.3 KeyExpansion 架構

2.2 KeyExpansion

KeyExpansion 是藉由一把初始金鑰來產 生 AES 演算法每一個回合所需使用到的回合 金鑰,如圖.3 所示,此架構為 32 位元 Key Expansion on-the-fly 的電路,可以用來產生加 密和解密的回合金鑰,目的是因為我們要作一 個低面積的設計,因此不能使用 RAM 把每一 回合的回合金鑰存起來以提供加解密使用,所 以必須各別的回合產生此回合所需的加密或 解密的回合金鑰,圖中框框的部份是假如使用 的 AES 演算法為加密&改良式解密時必須加 入的電路,假如使用的 AES 演算法為加密& 直接解密,那麼就不必加入此段電路,右上角 輸入的部份一開始連續4個 clock cycle 輸入四 筆 32 位元的資料向左位移,之後產生的每回 合的回合金鑰便會拉回輸入以產生下一回合 的回合金鑰,總共產生44 個回合金鑰(包含一 開始的初始金鑰)。

2.3 ShiftRows/InvShiftRows 轉換

在 128 位元 AES 的架構上 ShiftRows 是 不需耗費任何硬體的,只是單純的位移,但是 在 32 位元架構上, ShiftRows 必須靠幾個移位 暫存器來完成, R0,R1,R2,B0,B1,B2,B3 都是 32 位元的移位暫存器,一開始會連續輸入四 筆 32 位元的資料到 B0~B3 暫存器中,接下來 每個正緣 clock 便會向左位移一次,並由所選 擇的 D0,D1,D2,D3(各別為 8 位元)當成此回合 的 32 位元輸出,再送至下一個 block 運作, 每產生四筆輸出時 B0~B3 暫存器內的值便會 被新的值取代。

圖.4 ShiftRows/InvShiftRows 架構

2.4 AddRoundKey

單純的將 state 和回合金鑰作 XOR。

2.5 SubBytes/InvSubBytes 轉換

由於是作低面積設計,這部份不使用一 般常見的查表方法,因查表法必須使用到 RAM 會花費大量的面積,這部份我們以組合 邏輯來實現。

此轉換主要含兩部份,首先輸入值會先 經由乘法反元素區塊,使輸入的值 S 變成 S⁻¹, 接著緊隨著 Affine transformation,先乘一個 8x8 的 M 矩陣再 XOR 一個常數值 C 即可得到 SubBytes 轉換的輸出,乘法反元素的部份使用 混合場算術,我們將 GF(2^8)降為 GF(2^4)² 藉此 來縮減硬體複雜度[6],一個元素(S_hx + S_l)的乘 法反元素可以藉由擴展的歐幾里得演算法表 示成(S_hx + S_l)⁻¹=S_hΘx + (S_h+S_l) Θ, S_h、 S_lεGF(2^4),而Θ= (S_h²λ+S_hS_l+S_l²)⁻¹,藉此表示 式將電路結構表示如下圖:

δ和 δ⁻¹ 分別都是 8x8 的矩陣,因為我們 將 GF(2⁸)降為 GF(2⁴)² 必須先乘以一個轉換矩 陣 δ後,才能進去乘法反元素裡面運算,運算 完之後再乘以轉換矩陣 δ⁻¹ 將我們的值從 GF(2⁴)² 轉回 GF(2⁸),可參考文獻[9]。

	1	0	1	0	0	0	0	0			1	1	0	1	1	1	0	0	
	0	0	0	0	1	1	0	0			0	1	1	1	1	1	1	0	
	0	1	1	1	0	0	1	0			0	1	0	1	1	1	0	0	
T= [1	0	1	0	1	1	1	0]	T ⁻¹ = [1	1	0	1	0	0	1	0]
	0	0	0	1	0	1	0	0			1	0	0	1	1	0	1	0	
	1	0	0	1	0	1	1	0			1	1	0	1	1	0	1	0	
	0	0	0	1	0	0	1	0			1	1	0	1	0	0	0	0	
	1	1	1	0	0	0	0	1			1	1	1	1	1	1	1	1	
	圖.6T&T ⁻¹ 矩陣																		

電路中的 δ 、 δ^{-1} 、GF(2⁴)乘法、x⁻¹等區塊 都可以化成位元階層的形式利用CSE演算法 作化簡,藉此降低所需面積,ISB 的流程則 是先經由Affine transformation 再緊隨著乘法 反元素。

2.5.1 混合場算術

混合場算術可以用來縮減硬體複雜度, 更進一步可以使用管線的方法提昇效率,在此 不 採 用 管 線 , 兩 個 多 項 式 定 義 為 $Q(y)=y^{n}+\Sigma_{i=0}^{n-1}q_{i}y^{i},q_{i}\epsilon GF(2),P(x)=x^{m}+\Sigma_{i=0}^{m-1}p_{i}x^{i},$ $p_{i}\epsilon GF(2^{n}),Q(y)用來建構 GF(2)成 GF(2^{n}),P(x)$ 用來建構 GF(2ⁿ)成 GF((2ⁿ)^m),一個混合場就 定義成 GF((2ⁿ)^m),而此混合場和原本的 GF(2^k) 是同形的對於 k=nm,舉例來說,GF(2⁸)的混 合場可以藉由從 GF(2)反覆的建造使用如下的 irreducible 多項式:

	$GF(2) = >GF(2^4):$	$P_0(x)=x^4+x+1$
ľ	$GF(2^4) = >GF((2^4)^2):$	$P_1(x)=x^2+x+\lambda \}$
其中	$\lambda = \{1001\}_2 \circ$	

2.5.2 轉換實現的比較

表.1 為實現 32 位元 SB/ISB 共用的 MI(包 含 $\delta n \delta^{-1}$)部份和參考文獻[6][7][10]分別在結 構上和合成後作面積的比較,表中 Area 欄中 (X; Y*)為面積的資訊,X 表示為結構上換算為 相等的 gate 數(合成前),Y*表示為實際合成(使 用 Synopsys Design Compiler)後的 gate 數,使 用的製程為 TSMC 0.18um 標準元件函式庫且 使用相同的條件限制,我們合成的策略盡可能 達到低面積的需求,利用 Synopsys Design Compiler 內所有面積相關的指令來產生面積 最佳化,另外表中 Delay 欄中(D**)資訊代表 實際合成後閘的延遲時間,舉例來說,如 Lu[10] 的設計中,在結構上估計花費 2956 閘來實現 SB/ISB 轉換中 MI 的部份,而實際合成後的面 積花費則為 2796 閘而最長路徑延遲為 9.04 ns。

表中方法(1)是以ROM 來實現,因此跟(2) 和(3)的方法比起來會花費更大的面積,主要 的面積花費在4個256位元組的ROM上來實 現4個位元組的並行轉換。方法(2)為利用混 合場算術將GF($(2^4)^2$)有著較小的面積和延遲 時間,應用我們所提出的CSE演算法來縮減 $\delta \cdot \delta^{-1} \cdot$ MI部份和[6]作比較,在結構上和合成 後大概達到7.3%的面積節省,方法(3)經由 CSE 化簡後為1910閘[7]比較約節省了30.4% 的面積,經由合成後仍然省了8.1%的面積。

F F	Results	Area (gate)	Delay (ns)	
Methods		_		
(1) MI in GF(28)	Lu [10]	$\begin{array}{c} 192A_{XOR}{+}64A_{M} \\ _{UX}{+}24A_{INV} \\ {+}4A_{ROM} \\ (2956; 2796*) \end{array}$	$3T_{XOR}+2T_{MUX}$ + $1T_{INV}+1T_{ROM}$ (9.04**)	
	Our CSE	$120A_{XOR}+64A_M$ $_{UX}+12A_{INV}$ $+4A_{ROM}$ (2752; 2564*)	$4T_{XOR}+2T_{MUX}$ + $1T_{INV}+1T_{ROM}$ (8.50**)	
(2) MI in $GF((2^4)^2)$	Zhang [6]	$\frac{616A_{XOR}+64A_M}{_{UX}+144A_{AND}}$	$21T_{XOR}+2T_{MUX}$ $+4T_{AND}$	
		(2026; 1923*)	(7.65**)	
	Our CSE	$516A_{XOR}+64A_M$ $_{UX}+224A_{AND}$ $+12A_{INV}$	$19T_{XOR}+2T_{MUX}$ $+4T_{AND}+2T_{INV}$	
		(1878; 1783*)	(7.76**)	
(3) MI in $GF(((2^2)^2)^2)$	Satoh [7]	764A _{XOR} +64A _M _{UX} +360A _{AND} +36A _{INV} (2744; 2001*)	$23T_{XOR}+2T_{MUX} +4T_{AND}+1T_{INV} $ (8.67**)	
	Our CSE	$520A_{XOR}+64A_M$ $_{UX}+240A_{AND}$ $+12A_{INV}$ (1910; 1839*)	$23T_{XOR}+2T_{MUX} +4T_{AND}+1T_{INV} $ (9.15**)	

表.1 實現 32 位元 SB/ISB 方法比較

2.6 MixColumns/InvMixColumns 轉換

一次一行四個 bytes 的轉換,藉由 4x4 的 矩陣乘法,如下所示:

$$MC : \begin{bmatrix} A'' \\ B'' \\ D'' \\ E'' \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \bullet \begin{bmatrix} A' \\ B' \\ D' \\ E' \end{bmatrix}$$

$$IMC : \begin{bmatrix} A_{inv}^{"} \\ B_{inv}^{"} \\ D_{inv}^{"} \\ E_{inv}^{"} \end{bmatrix} = \begin{bmatrix} 0 \ e \ 0 \ b \ 0 \ d \ 09 \\ 09 \ 0 \ e \ 0 \ b \ 0 \ d \\ 0 \ 09 \ 0 \ e \ 0b \\ 0 \ 0 \ 09 \ 0e \end{bmatrix} \bullet \begin{bmatrix} A_{inv} \\ B_{inv} \\ D_{inv} \\ E_{inv} \end{bmatrix}$$

A、B、D、E 各為 8 位元而轉換矩陣為 十六進制表示法,舉例來說, MC 轉換後的 A"=({02}・A')+({03}・B')+({01}・D')+({01}・ E')

{0X} • A'表示在 GF(2⁸)中的乘法運算, irreducible 多項式為 x⁸+x⁴+x³+x¹+1。

MC 和 IMC 在 GF(2⁸)中的運算,可以使用子 結構分享的方式有效率的實現[7][10-12],使 用函數區塊 XTime 來產生不變的乘法,如 {02} · A'可以表示為 XTime(A')。MC 和 IMC 的轉換可以藉由共同的子結構分享來達到面 積的縮減,IMC 可以被分解為加法和乘法表 示,如 IMC=MC+G、IMC=MC x Z。

表.2 比較一些分開實現 MC 和 IMC 轉換 的方法產生 4 個位元組輸出,每個方法有兩列 分別為上列是結構上的資訊,下列為實際合成 後的資訊, MC 和 IMC 的面積花費使用我們 所提出的 CSE 演算法可以得到一個最佳化的 結果在結構上分別為 108A_{XOR}和 167A_{XOR},和 Direct realization 比較起來在結構上省了 28.9%(MC)和 62%(IMC)的面積花費,而經過 合成後則是分別省了 11.4%和 44.8%。

我們可以觀察出有先使用 CSE 演算法再 經過 Synopsys DC 所產生的結果比沒有使用 CSE 演算法的結果好很多,因此我們所提出的 CSE 演算法確實可以有效率的縮減電路面積。

表.2 實現 32 位元 MC 和 IMC 的比較

Area/Delay	MC		IMC		
	Area (A_{XOR})	Delay (T_{XOR})	Area (A_{XOR})	Delay (T_{XOR})	
Methods	Area (gates)	Delay (ns)	Area (gates)	Delay (ns)	
(1) XTime-based	140	4	356	6	
Kuo [11]	310	0.62	758	1.70	
(2)Byte-level	132	4	464	7	
sharing	310	1.06	558	2.84	
Sklavos [12]					
(3)Direct	152	3	440	6	
realization	325	0.73	815	1.37	
(4)Bit-level	136	4	264	6	
sharing	336	0.67	623	1.80	
Satoh [7]					
(5)Our CSE	108	3	167	7	
method	288	0.83	450	2.14	

3. CSE 演算法

AES 演算法主要的面積花費在 SB、ISB、 MC 和 IMC 上,且都可以表示成由 XOR/AND 組成的函式之位元階層表示法,我們所提出新 的 CSE 演算法主要就是可以縮減能表示成這 種函式的電路面積。首先第一步為先提取 AND 的項目,盡可能的達到最大次數的提取 後,第二步則為提取 XOR 項目,根據: Rule1:找出最大共同項的 pair。 Rule2:找出最小相關性最小的 pair。 Rule3:找出出現在函式中最少次的 pair。

Rule4:比較在下一回合中哪一個還能提出最 多共同項的。

舉例來說,我們要化簡此 IMC 內部一項 乘法展開後由 XOR 所組成的函式:

$D_{inv}^{''} = \{0d\}A_{inv} + \{09\}B_{inv} + \{0e\}D_{inv} + \{0b\}E_{inv}$

```
\begin{bmatrix} a_4 + a_5 + a_7 + b_4 + b_7 + d_4 + d_5 + d_6 + e_4 + e_6 + e_7 \\ a_3 + a_4 + a_6 + a_7 + b_3 + b_6 + b_7 + d_3 + d_4 + d_5 + d_7 + e_3 + e_5 \\ + e_6 + e_7 \end{bmatrix}
```

- $a_2 + a_3 + a_5 + a_6 + b_2 + b_5 + b_6 + b_7 + d_2 + d_3 + d_4 + d_6 + e_2$ + $e_4 + e_5 + e_6 + e_7$
- $= \begin{vmatrix} a_1 + a_2 + a_4 + a_5 + a_7 + b_1 + b_4 + b_5 + b_6 + d_1 + d_2 + d_3 + d_5 \\ + e_1 + e_3 + e_4 + e_5 + e_6 + e_7 \end{vmatrix}$
- $a_0 + a_1 + a_3 + a_5 + a_6 + a_7 + b_0 + b_3 + b_5 + b_7 + d_0 + d_1 + d_2$ + $d_5 + d_6 + e_0 + e_2 + e_3 + e_5$
- $|a_0+a_2+a_6+b_2+b_6+b_7+d_0+d_1+d_6+e_1+e_2+e_6+e_7|$

 $a_1 + a_5 + a_7 + b_1 + b_5 + b_6 + d_0 + d_5 + e_0 + e_1 + e_5 + e_6 + e_7$

 $a_0 + a_5 + a_6 + b_0 + b_5 + d_5 + d_6 + d_7 + e_0 + e_5 + e_7$

圖.7 舉例說明:所要化簡的函式

我們可以提取出以下的共同項並且以變數取 代所提取出的 pair

w ₃₂ =e ₆ +e ₇	$w_{33}=b_6+w_{32}$	$w_{34} = a_7 + d_5$	$w_{35}=a_5+b_5$
$w_{36} = d_5 + w_{35}$	$w_{37} = a_6 + d_6$	$w_{38} = a_0 + w_{37}$	w ₃₉ =a ₃ +b ₇
$w_{40} = a_2 + w_{33}$	$w_{41}=a_4+w_{34}$	$w_{42} = e_0 + w_{36}$	$w_{43} = b_0 + w_{38}$
$w_{44} = w_{42} + w_{43}$	$w_{45}=b_1+d_1$	$w_{46} = d_0 + w_{34}$	$w_{47} = a_1 + w_{45}$
$w_{48} = b_2 + e_2$	w49=b3+w39	$w_{50} = e_3 + w_{49}$	$w_{51} = b_4 + w_{41}$
$w_{52} = e_4 + w_{51}$	$w_{53} = d_3 + d_4$	$w_{54} = d_2 + w_{36}$	$w_{55} = d_1 + w_{40}$

圖.8 所有被提取出的最大共同項

$s_{max}^{(0)}$	= 6	$s_{max}^{(1)} = 5$	$s_{max}^{(2)} = 5$	$s_{max}^{(3)} = 5$
$s_{max}^{(4)}$	= 5	$s_{max}^{(5)} = 4$	$s_{max}^{(6)} = 3$	$s_{max}^{(7)} = 3$
$s_{max}^{(8)}$	= 3	$s_{max}^{(9)} = 3$	$s_{max}^{(10)} = 3$	$s_{max}^{(11)} = 2$
$s_{max}^{(12)}$	= 2	$s_{max}^{(13)} = 2$	$s_{max}^{(14)} = 2$	$s_{max}^{(15)} = 2$
s ⁽¹⁶⁾ _{max}	= 2	$s_{max}^{(17)} = 2$	$s_{max}^{(18)} = 2$	$s_{max}^{(19)} = 2$
$s_{max}^{(20)}$	= 2	$s_{max}^{(21)} = 2$	$s_{max}^{(22)} = 2$	$s_{max}^{(23)} = 2$

圖.9 對應圖.8 最大共同項所發生的次數

$$\mathbf{D}_{inv}^{"} = \begin{bmatrix} \mathbf{a}_5 + \mathbf{b}_7 + \mathbf{d}_4 + \mathbf{d}_6 + \mathbf{w}_{32} + \mathbf{w}_{52} \\ \mathbf{a}_6 + \mathbf{d}_7 + \mathbf{e}_5 + \mathbf{w}_{33} + \mathbf{w}_{41} + \mathbf{w}_{50} + \mathbf{w}_{53} \\ \mathbf{a}_4 + \mathbf{w}_{37} + \mathbf{w}_{39} + \mathbf{w}_{40} + \mathbf{w}_{48} + \mathbf{w}_{53} + \mathbf{w}_{55} \\ \mathbf{d}_3 + \mathbf{e}_4 + \mathbf{w}_{47} + \mathbf{w}_{52} + \mathbf{w}_{54} + \mathbf{w}_{55} \\ \mathbf{a}_1 + \mathbf{d}_1 + \mathbf{d}_2 + \mathbf{e}_2 + \mathbf{w}_{44} + \mathbf{w}_{46} + \mathbf{w}_{50} \\ \mathbf{b}_7 + \mathbf{d}_0 + \mathbf{e}_1 + \mathbf{w}_{38} + \mathbf{w}_{48} + \mathbf{w}_{55} \\ \mathbf{w}_{33} + \mathbf{w}_{42} + \mathbf{w}_{46} + \mathbf{w}_{48} \\ \mathbf{d}_5 + \mathbf{d}_7 + \mathbf{e}_7 + \mathbf{w}_{44} \\ \mathbf{B}.10 \ \mathbf{z} \mathbf{R} \mathbf{r} \mathbf{z} \mathbf{L} \mathbf{u} \ \mathbf{w} \ \mathbf{w} \mathbf{R} \mathbf{r} \ \mathbf{k} \ \mathbf{k} \ \mathbf{h} \ \mathbf{k} \mathbf{R} \end{bmatrix}$$

原本的函式需要 110A_{XOR} 經由使用我們 所提出的 CSE 演算法後,變成只需要 63A_{XOR} 可以看出面積有明顯的改善。

4.晶片結果比較

表.3 晶片結果比較

	Tech. (um)	Freq. (MHz)	Thr. (Mb/ s)	Gate Equivalent (k-gates)
Hua [5]	0.35	85	247	9.843
Mangard[13]	0.6	64	128	10.799
Ours	0.18	77	116	8.206

我們所實現的 AES 設計,核心部份達到 8206 開的結果且最高操作頻率為 77MHz。由 於晶片下線有腳位的限制,因此最後的晶片包 含一層 8 位元的介面將輸入輸出包覆成 8 位元 傳輸,因為多了此介面,在最後晶片的面積變 為 13962 開,操作頻率則是降為 40MHz。在 此我們只和[5][13]比較,皆為 32 位元資料路 徑,可以看出我們所使用的 CSE 演算法確實 可以達到一個低面積的結果,在金鑰產生的單 元上我們的設計和[5]一樣都是使用 32 位元資 料路徑,[13]則是採用 128 位元資料路徑。

5.結論

在這篇論文當中,我們提出一個新的CSE 演算法最佳化有效率的縮減 AES 中的硬體面 積,主要針對 SB/ISB、MC/IMC 轉換可以表 示成位元階層表示法由 XOR/AND 組成的函 式來使用,即使 Synopsys DC 對於所有的組合 邏輯皆可以產生邏輯最小化,我們觀察 SB/ISB、MC/IMC 有先利用 CSE 演算法化簡 額外分別可以多省 9.3%和 35%的面積花費, 總共的面積縮減效率可以達到 12.2%使用 TSMC 0.18um cell library,由晶片比較結果顯 示我們的結果確實比別人先前的設計在面積 上要好很多。

Ŷ	•4 相力 貝 礼					
使用製程	TSMC 0.18um cell					
	library					
封裝	40 S/B					
晶片大小	$1.447 \text{ x} 1.445 \text{ mm}^2$					
閘數	13692					
錯誤涵蓋率	99.86 % with 70 test					
	patterns					
功率消耗	16.24mW@40 MHz					

表.4 晶片資訊

圖.11 32 位元 AES layout

参考文獻

- [1] Chih-Pin Su, Tsung-Fu Lin, Chih-Tsun Huang ,and Cheng-Wen Wu,"A High-Throughput Low-Cost AES Processor,"*IEEE Communications Magzine*, Vol. 41, pp. 86-91, Dec. 2003.
- [2] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and P. Rohatgi, "Efficient Implementation of Rijndael Encryption with Composite Field Arithmetic," *Proceedings of Cryptographic Hardware and Embedded Systems (CHES2001)*, pp. 171-184, Paris, France, May. 2001.
- [3] B. Sunar, E. Savas, Cetin K. Koc, "Constructing Composite Field Representations for Efficient Conversion," *IEEE Transactions On Computers*, Vol. 52, No.11, pp. 1391-1398, Nov. 2003.
- [4] X.Zhang,and K.K.Parhi,"On the Optimum Constructions of Composite Field for the

AES Algorithm,"*IEEE Transactions On Circuits and Systems II Express Briefs*,Vol.53,No.10, pp. 1153-1157, Oct. 2006.

- [5] H.Li,and J.Li,"A New Compact Architecture for AES with Optimized ShiftRows Operation,"*IEEE International Symposium* on Circuits and Systems, 2007. ISCAS 2007. pp.1851-1854, May 2007.
- [6] X. Zhang, and K. K. Parhi, "High-Speed VLSI Architectures for AES Algorithm," *IEEE Transactions on Very Large Scale Integration Systems*, Vol.12, pp. 957-967, Sept. 2004.
- [7] A.Satoh,S.Morioka,K.Takano,and S.Munetoh,"A Compact Rijndael Hardware Architecture with S-Box Optimization,"C.Boyd(Ed.):ASIACRYPT 2001,LNCS 2248,pp.239-254, 2001.
- [8] M.H.Jing, J.H.Chen, and
 Z.H.Chen, "Diversified MixColumn Transformation of AES," Information, Communications & Signal Processing, 2007 6th International Conference on.pp.1-3, Dec. 2007.
- [9] C.Paar,"Efficient VLSI architecture for bit-parallel computations in Galois field,"Ph.D. dissertation, Institute for Experimental Mathemetics, University of Essen, Germany, 1994.
- [10] C. C. Lu and S. Y. Tseng, "Integrated Design of AES (Advanced Encryption Standard) Encrypter and Decrypter," *Proceedings of Application-Specific Systems, Architectures and Processors*, pp. 277-285, July 2002.
- [11] H. Kuo and I. Verbauwhede, "Architectural Optimization for a 1.82 Gbits/sec VLSI Implementation of the AES Rijndael Algorithm," *Proceedings of Cryptographic Hardware and Embedded Systems*, pp. 51-64, May 2001.
- [12] N. Sklavos and O. Koufopavlou, "Architecture and VLSI Implementation of the AES-Proposal Rijndael," *IEEE Transactions on Computers*, Vol. 51, pp. 1454-1459, Dec. 2002.
- [13] S. Mangard, M. Aigner, and S. Dominikus,"A highly regular and scalable AES hardware architecture," *IEEE Transactions on Computers*, Vol. 52, pp. 483-491, April 2003.