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Abstract—Although combinatorial reverse 
auction has attracted much attention recently, 
most studies focus on problems with single 
buyer and multiple sellers. In this paper, we 
will study combinatorial reverse auction with 
multiple buyers and multiple sellers. We 
propose the concept of proxy buyer to deal 
with this problem. The proxy buyer 
consolidates the demands from the buyers and 
then holds a reverse auction to try to obtain 
the goods from a set of sellers who can provide 
the goods. Each seller places bids for each 
bundle of goods he can provide. The problem 
is to determine the winners to minimize the 
total cost to acquire the required items. The 
main results include: (1) a problem 
formulation for the combinatorial reverse 
auction problem; (2) a solution methodology 
based on Lagrangian relaxation and (3) 
analysis of numerical results based on our 
solution algorithms. 
 
Keywords—Combinatorial auction, e-
commerce, optimization. 

1. INTRODUCTION 

Auctions are popular, distributed and 
autonomy preserving ways of allocating items or 
tasks among multiple agents to maximize 
revenue or minimize cost. Applying 
combinatorial auctions in corporations’ 
procurement processes can lead to significant 
savings [10] and [11]. Allowing bids for bundles 
of items is the foundation of combinatorial 
auctions, which have attracted considerable 
attention in the auction literature. There are, 
however, several problems with the 
implementation of combinatorial auctions. 

Combinatorial auctions have been notoriously 
difficult to solve from a computational point of 
view [12]. Combinatorial auction is closely 
related to the set packing/knapsack problem [13]. 
It deals with computational aspects and heuristics 
for solving what is known as the Winner 
Determination Problem of an auction [14], [15] 
and [16]. 

An excellent survey on combinatorial auctions 
can be found in [1] and [3]. In a combinatorial 
auction [1], bidders may place bids on 
combinations of items or tasks. This allows the 
bidders to express complementarities between 
items instead of having to speculate into an item's 
valuation about the impact of possibly getting 
other, complementary items or tasks. The 
combinatorial auction problem can be modeled as 
a set packing problem (SPP), a well-known NP-
complete problem [4]-[8]. Many algorithms have 
been developed for combinatorial auction 
problems. For example, in [2], [17], [18], the 
authors proposed a Lagrangian Heuristic for a 
combinatorial auction problem. Exact algorithms 
have been developed for the SPP problem, 
including a branch and bound search [8], iterative 
deepening A* search [7] and the direct 
application of available CPLEX IP solver [4]. 
However, in real world, combinatorial reverse 
auction may take place with multiple buyers and 
multiple sellers. Motivated by the deficiency of 
the existing studies, we consider a combinatorial 
auction problem in which there are multiple 
buyers and multiple sellers. We propose the 
concept of proxy buyer to deal with this problem. 
The proxy buyer consolidates the demands from 
the buyers and then holds a reverse auction to try 
to obtain the goods from a set of sellers who can 
provide the goods. Each seller places bids for 
each bundle of goods he can provide. The 
problem is to determine the winners to minimize 
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the total cost for the proxy buyer. 
The remainder of this paper is organized as 

follows. In Section 2, we present the winner 
determination problem formulation for proxy 
buyer’s combinatorial reverse auction problem. 
In Section 3, we propose the Lagrangian 
relaxation algorithms. In Section 4, specification 
of the requirements for the implementation of our 
solution algorithms is proposed and an economic 
interpretation for our solution approach is given. 
In Section 5, analysis of numerical results and the 
proposed algorithm are made. We conclude this 
paper in Section 6. 

2. COMBINATORIAL REVERSE 
AUCTION WITH PROXY BUYER 

In this paper, we first formulate the above 
combinatorial optimization problem as an integer 
programming problem. We then develop solution 
algorithms based on Lagrangian relaxation. 
Figure 1 illustrates an application scenario in 
which Buyer requests to purchase at least a 
bundle of items 2A, 4B and 3C from the market. 
There are four bidders, Seller 1, Seller 2, Seller 3 
and Seller4 who place bids in the system. 
Suppose Seller 1 places one bid: (2A, 2B, p1), 
where p1 denote the prices of the bid. Seller 2 
places one bid: (2A, 2C, p2). Seller 3 places one 
bid: (2B, 2C, p3). Seller 4 places one bid: (1C, 
p4). We assume that all the bids entered the 
auction are recorded. A bid is said to be active if 
it is in the solution. We assume that there is only 
one bid active for all the bids placed by the same 
bidder. For this example, the solution for this 
reverse auction problem is Seller1: (2A, 2B, p1), 
Seller 3: (2B, 2C, p3) and Seller 4: (1C, p4). 

Consider a buyer who requests a set of items to 
be purchased. Let K denote the number of items 
requested. Let ikd denote the desired units of 
the thk − items by the buyer, where 

},....,3,2,1{ Kk ∈ . In a combinatorial auction, there 
are many bidders to submit a tender. 
Let N denote the number of bidders in a 
combinatorial auction. Each },....,3,2,1{ Nn∈  
represents a bidder. To model the combinatorial 
reverse auction problem, the bid must be 
represented mathematically. We use a 
vector nb = ),,...,,,( 321 nnknnn pqqqq to represent 
the bid submitted by bidder n , where nkq is a 
nonnegative integer that denotes the quantity of 
the thk − items and np is a real positive number 

that denotes the price of the bundle. As the 
quantity of the thk − items cannot exceed the 
quantity ikd , it follows that the 
constraint iknk dq ≤≤0 must be satisfied. The 
bid nb is actually an offer to deliver nkq units of 
items for each },....,3,2,1{ Kk ∈ a total price of np . 
Let N denote the number of bids placed by 
bidder },....,3,2,1{ Nn∈ . To formulate the 
problem, we use the variable nx to indicate the 
bid placed by bidder n is active ( nx =1) or 
inactive ( nx =0). The winner determination 
problem can be formulated as an Integer 
Programming problem as follows. 

Buyer 1

Seller 1 Seller 2 Seller 3

A B C

Buyer 2

Seller 4

Proxy Buyer

Buyer 3

 
Figure 1 Combinatorial Reverse Auction with 

Proxy Buyer 

 Winner Determination Problem (WDP):   
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 In WDP problem, we observe that the coupling 

among different operations is caused by the 

contention for resources through the minimal 

resource requirement constraints (2-1). 
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3. SOLUTION ALGORITHM 

For a given Lagrange multiplier λ , the relaxation 
of constraints (2-1) decomposes the original 
problem into a number of bidder’s subproblems 
(BS). These subproblems can be solved 
independently. That is, the Lagrangian relaxation 
results in subproblems with a highly 
decentralized decision making structure. 
Interactions among subproblems are reflected 
through Lagrange multipliers, which are 
determined by solving the following dual 
problem. 
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)(n λL defines a bidder’s subproblems (BS). Our 

methodology for finding a near optimal solution 

of WDP is developed based on the result of 

Lagrangian relaxation and decomposition. It 

consists of three parts as follows.  

(1) An algorithm for solving subproblems 

Given λ , the optimal solution to BS 

subproblem )(n λL can be solved as follows. 
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(2) A subgradient method for solving the dual 

problem )(max
0

λ
λ

L
≥

 

Let lx be the optimal solution to the subproblems 

for given Lagrange multipliers lλ of iteration l . 

We define the subgradient of )(λL as 
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where },...,2,1{ Kk ∈ . 

The subgradient method proposed by Polyak [9] 

is adopted to updateλ as follows 
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estimate of the optimal dual cost. The iteration 

step terminates if lα is smaller than a threshold. 

Polyak proved that this method has a linear 

convergence rate. 

Iterative application of the algorithms in (1) 

and (2) may converge to an optimal dual 

solution ( *x , *λ ).  

(3) A heuristic algorithm for finding a near-

optimal x , feasible solution based on the 

solution  ( *x , *λ )  of the relaxed problem 

The solution ( *x , *λ ) may result in one type of 

constraint violation due to relaxation: assignment 

of the quantity of items less than the demand of 

the items. Our heuristic scheme first checks all 

the demand constraints 
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Let 0K = }},,....,3,2,1{{
1 1
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0K denotes the set of demand constraints violated. 

Let 0N = }0},,....,3,2,1{{ * =∈ nxNnn . 0N denotes 

the set of bidders that is not a winner in 

solution *x .  To make the set of 

constraints 0K satisfied, we first pick 0Kk ∈ with 
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The heuristic algorithm proceeds as follows to 

make constraint k satisfied. 

Select 0Nn∈ with nqNn
pargn

nk 0},,...,2,1{
min

>∈
= and 

set *
nx =1. After performing the above operation, 

we set }{\00 nNN ← . If the violation of the k -th 

constraint cannot be completely resolved, the 

same procedure repeats. Eventually, all the 

constraints will be satisfied. We use x to denote 

the resulting feasible solution obtained from the 

above heuristics. 

4. NUMERICAL RESULTS AND 
ANALYSIS 

Based on the proposed algorithms for 
combinatorial reverse auction, we conduct 
several examples to illustrate the validity of our 
method. 
Example 1: Consider two buyers who will 
purchase a set of items as specified in Table 1. 
Four potential sellers’ bids as shown in Table 2. 
For this example, we have 

,3,1,2,1,3,4,2 21131211 ======= ddddKNI
.1,0 2322 == dd  According to Table 4.2, we 

have: 
1,1,2 131211 === qqq , 1,2,1 232221 === qqq ,    
2,0,3 333231 === qqq , 1,1,1 434241 === qqq ,   

Suppose the prices of the bids are: 
,32,55,45,45 4321 ==== pppp  

 

  
 
 
 
 

 
Table 1 Buyers’ Requirements                      

 
 
 
 
 
 
 

 
Table 2 Sellers’ Bids 

Suppose we initialize the Lagrange multipliers as 
follows. 

0.10)3(,0.15)2(,0.10)1( === λλλ . 
Our algorithm the subgradient algorithm 
converges to the following solution: 

*
3x =1and *

nx =0 for all the other n . As the above 
solution is a feasible one, the heuristic algorithm 
needs not be applied. Therefore, 3x =1, 2x =1. 
The solution *x is also an optimal solution. The 
duality gap of the solution is 3.75%. The duality 
gap is within 5%. This means the solution 
methodology generates near optimal solution. 
Despite the duality gap is not zero, the 
solution x is also an optimal solution for this 
example. 
  
Table 3 illustrates the duality gap of several cases 
based on the problem size (I, K). According the 
results, the duality gaps are within 3%. This 
means the solution methodology generates near 
optimal solution. 
  

I N K Duality 
Gap 

5 70 5 2.65% 

10 50 5 2.37% 

10 30 24 1.15% 

                                    Table 3 

In addition to the two examples above, we also 
conduct several experiments to study the 
computational efficiency of our proposed 

 Item
1 

Item
2 

Item
3 

Buyer 1 1 2 1 
Buyer 2 3 0 1 

 Item
1 

Item
2 

Item
3 

Seller 1 2 1 1 
Seller 2 1 2 1 
Seller 3 3 0 2 
Seller 4 1 1 1 
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algorithms.  
Figure 2 shows the CPU time for a number of 
problems in which parameter N and K are fixed 
while the parameter I is changed. The increase in 
the CPU time is not significant as parameter I is 
increased.  
According to the following equation:  
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This result justifies the fact that the CPU time to 
compute )L(λ for a given λ grows approximately 
proportionally to I . 

0

50

100

150

200

5 10 15 20 25 30

 
Figure 2 CPU time with respect to I  

Figure 3 shows the CPU time for a number of 
problems in which parameter I and K are 
fixed while the parameter N is changed. The 
increase in the CPU time is not significant as 
parameter N is increased.  
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Figure 3 CPU time with respect to N  

Figure 4 shows the CPU time for a number of 
problems in which parameter I and N are 
fixed while the parameter K is changed. The 

increase in the CPU time is not significant as 
parameter K is increased.  
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Figure 4 CPU time with respect to K  

 

5. CONCLUSIONS 

Most studies on combinatorial reverse auction 
focus on auction with single buyer/multiple 
sellers. A practical issue is how to handle 
combinatorial reverse auction with multiple 
buyers and multiple sellers. Combinatorial 
auction enables several bidders to bid on different 
combination of goods simultaneously according 
to personal preferences. Bidders can select 
multiple items at one time and offer those items a 
combined price. We propose the concept of 
proxy buyer to deal with this problem. The proxy 
buyer consolidates the demands from the buyers 
and then holds a reverse auction to try to obtain 
the goods from a set of sellers who can provide 
the goods. Each seller places bids for each bundle 
of goods he can provide. We formulate a winner 
determination optimization problem for 
combinatorial auction with a proxy buyer. The 
demands of the proxy buyer impose additional 
constraints on determination of the winners.The 
problem is to determine the winners to minimize 
the total cost to acquire the required items. The 
main results include: (1) a problem formulation 
for the combinatorial reverse auction problem; (2) 
a solution methodology based on Lagrangian 
relaxation and (3) analysis of numerical results 
based on our solution algorithms. By applying 
Lagrangian relaxation technique, the original 
optimization can be decomposed into a number 
of bidders’ subproblems which can be solved 
efficiently. Analysis of the numerical results 
shows that our algorithm can generate near-
optimal solution within acceptable CPU time. 
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