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Abstract—This paper has presented an effective 
and efficient approach to extract diagnosis rules 
from inconsistent and redundant data set of power 
transformers using rough set theory. The extracted 
diagnosis rules can effectively reduce space of 
input attributes and simplify knowledge 
representation for fault diagnosis. The fault 
diagnosis decision table is first built through 
discretized attributes. Next, the GA based 
optimization process is used to obtain the minimal 
reduct of symptom attributes. Finally, the rule 
simplification process is adapted to achieve the 
maximal generalized decision rules, which can be 
derived from inconsistent and redundant 
information. Experimental results demonstrate 
that the proposed approach has remarkable 
diagnosis accuracy than the existing method. 
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1. INTRODUCTION 

Fault diagnosis of power transformers must 
strictly be periodically examined to find incipient 
faults and to protect them from further 
deterioration as early as possible [1-4]. Dissolved 
gas analysis (DGA) methods have been widely 
used [5-11] to detect incipient faults in 
transformers, which DGA identifies faults by 
considering the ratios of specific dissolved gas 
concentrations, their generation rates, and the 
total combustible gas detected by sampling and 
testing of the transformer insulation oil. 

Fuzzy expert system [12] has been suggested 
to diagnose incipient faults of transformers. The 
crisp boundaries of the gas attributes to classify 
the fault types were fuzzified in this fuzzy expert 
system to handle the imprecision and 
incompleteness nature of the transformer fault 
diagnosis problem. The diagnosis results were 
promising; however, the fuzzy expert system 
could not learn from previous diagnosis results 
because the membership functions and the 
diagnostic rules were determined by practical 
experience or trial-and-error tests. 

Fuzzy diagnosis systems [13,14] were 
developed for transformer fault diagnosis to 

acquire knowledge directly from training data 
and thus circumvent the disadvantages of the 
fuzzy expert system [12]. However, the numbers 
of classification attributes and fuzzy partitions 
were limited to reduce the number of decision 
variables to be determined, due to simultaneous 
determination of the membership functions and 
the inference rules in the diagnostic systems. 

Artificial neural networks (ANNs) [15-17] 
have been presented to deal with the transformer 
fault diagnosis, due to their accurate and efficient 
performance in numerical modeling problems, 
built-in fault tolerance and real-time response in 
practical applications. The ANNs can acquire 
new experiences by incremental training from 
newly obtained samples. Moreover, they can 
interpolate and extrapolate from their experiences, 
yielding at least a best guess of the fault. The 
ANNs trained by an error back-propagation 
algorithm have great diagnostic capabilities. 
However, certain issues, such as local 
convergence and determination of the network 
configuration and control parameters (learning 
rate and momentum constant), must be resolved 
before the ANNs can become a practical tool.  

This paper presents rough set theory (RST) to 
handle vagueness and uncertainty inherent in 
making decisions. RST has been applied to some 
branches of artificial intelligence and cognitive 
sciences, such as machine learning, knowledge 
discovery from databases, expert systems, 
inductive reasoning, pattern recognition and 
learning [18-20]. 

2. ROUGH SET THEORY 

The basic definitions of the RST are briefly 
stated as follows. 

An inform system S is an ordered pair S = 
(U,A), where U is a nonempty, finite set called 
the universe, A is a nonempty, finite set of 
attributes. Each attribute a∈A is a total function a: 
U—Va, where Va is the set of values of a, called 
the domain of a. In the RST, the elements of the 
universe are referred to as objects which are 
characterized through their attribute values. 
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An indiscernibility relation is a binary relation 
that identifies objects which have the same 
descriptions  with respect to a set of attributes of 
objects. Let S = (U,A) be an information system. 
Each subset of attributes B ⊆ A defines a 
equivalence relation IND(B), called an B-
indiscernibility relation; 

B = {(x,y)∈  UU × : ∀ a∈B, a(x) = a(y)}.   (1) 
Obviously, IND(B) is an equivalence relation 

and 
 ).()( aINDBIND

Ba∈
= I                         (2) 

Given S =(U,A), let X⊆ U be a set of objects, 
and B⊆ A be a set of attributes. The B-lower and 
B-upper approximation of X is defined 
respectively as follows: 
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}Ø][:{ ≠∈= XxUxXB B I                (4) 

where [x]B denotes an equivalence class of B 
containing x∈U. 

The set XB is the set of all elements of U, 
which can be with certainty classified as 
members of X, with respective to the values of 
attributes from B; and the set XB is those 
elements of U, which can be possibly classified 
as members of X, with respective to the values of 
attributes from B. 

Let S = (U,A) be an information system with k 
objects. The discernibility matrix of S is a k× k 
matrix with entries cij consisting of the set of 
attributes from A on which objects xi and xj differ, 
i.e.,  

)},()(:{ jiij xaxaAac ≠∈=  for i, j = 1, 2, …, k. (5) 
A discernibility function fS for S is a 

propositional formula of n Boolean variables, 
,...,,1
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where }.:{ ijij caac ∈= ∗∗  
The discernibility function fS describes 

constraints which must hold to preserve 
discernibility between all pair of discernible 
objects from S. It requires keeping at least one 
attribute from each non-empty element of the 
discernibility matrix corresponding to any pair of 
discernible objects. The set of all prime 
implicants of fS determines the set of all reducts 
of any information system S = (U,A). 

The B-reduct of A is the minimal subset of A, 
which provides the same classification of objects 
into elementary classes of B as the whole 

attributes A. The B-core of A is the essential part 
of A, which can not be eliminated without 
disturbing the ability to classify objects into 
elementary classes of B. A attribute a ∈ B is 
superfluous in B, if IND(B) = IND(B-{a}); 
otherwise, a is indispensable in B. If all attributes 
a∈B are indispensable in B, then B will be called 
orthogonal. 

Subset BB ⊆'  is a reduct of B, denoted red(B), 
iff 'B is orthogonal and )'()( BINDBIND = . The set 
of all indispensable attributes in B will be called 
the core of B, denoted core(B), and defined as: 

core(B) = )(BredI                      (7) 

A decision system A = (U, C{d}) is an 
information system for which the attributes are 
separated into disjoint sets of condition attributes 
C and decision attributes D, .Ø=DC I  

A decision system is represented in the form of 
a decision table, in which its rows contain some 
objects and columns contain the values of 
attributes describing the objects, and the decision 
table contains rules specifying what decisions 
should be made when certain conditions are 
satisfied. Note that some redundant and 
inconsistent attributes may exist in the decision 
rules, and the reduction of the decision table must 
be further processed to eliminate these attributes. 

3. FAULT DECISION ATTRIBUTES 
REDUCTION 

A decision table must be established before 
using rough set for fault diagnosis of turbine-
generator unit. The relationship between the ratio 
of gases and fault are complicated. In [21], 15 gas 
ratios are selected as the input features, including 
C2H2/C2H4, CH4/H2, C2H4/C2H6, C2H6/CH4, 
CH4/C2H4, C2H2/CH4, C2H2/C2H6, C2H6/H2, 
C2H4/H2, C2H2/H2, CH4/total hydrocarbon, C2H4/ 
total hydrocarbon, C2H6/total hydrocarbon, C2H2/ 
total hydrocarbon, H2/(total hydrocarbon plus H2). 
Five faults were considered in this paper: 

(1) no fault,  
(2) lower energy discharge,  
(3) high energy discharge,  
(4) low temperature overheating,  
(5) high temperature overheating.  
A decision table [21] is considered in this 

paper, as shown in Table 1. As listed in this table, 
the number of input feature is from 15 down to 5, 
the number of rules is from 29 down to 20. 
Therefore, the dimension of database is greatly 
reduced. However, inconsistent cases exist in the 
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decision rules. Table 2 shows that rules 7, 12 are 
inconsistent rules, and each rule has the same 
values of symptom attributes, but possess 
different decision attributes. 
   

TABLE 1  

DECISION TABLE [21] 

U c1 c2 c3 c4 c5 d 
1 1 0 1 0 2 1 
2 0 0 2 2 2 2 
3 0 0 2 2 1 4 
4 1 1 0 1 0 5 
5 2 2 1 0 1 3 
6 2 2 0 0 1 3 
7 1 1 0 0 0 1 or 5 
8 1 2 1 1 0 5 
9 1 1 1 1 0 4 

10 2 2 0 0 2 3 
11 1 2 0 0 0 5 
12 0 1 1 2 1 4 or 5 
13 0 0 2 1 2 2 
14 0 1 0 0 0 5 
15 1 1 1 2 1 4 
16 2 1 2 1 2 2 
17 2 2 1 1 1 3 
18 2 0 2 1 1 1 
19 0 0 1 1 0 4 
20 1 2 0 1 0 5 

 
In this paper, attribute reduction is a process 

to obtain a subset from the original set of 
symptoms of the given fault patterns. The 
attribute reduction is solved by an optimal 
process guided by the proposed genetic algorithm 
(GA) [22], and the proposed GA is used to 
compute the minimal reduct. 

As shown in Table 2, there are 14 decision 
rules can be generated by the proposed GA, 
However, inconsistent cases exist in the decision 
rules. Table 2 shows that rules 3 and 13 are 
inconsistent rules, and each rule has the same 
values of symptom attributes, but possess 
different decision attributes. 

A set of decision rules can be generated by the 
minimal reduct obtained from the GA; however, 
the rules may be inconsistent. This paper 
develops a process for maximum generalized 
decision rules from imprecise, incomplete and 
inconsistent diagnosis rules. In the process of rule 
simplification, the maximal number of symptom 
attribute values is removed without losing 
essential information, and the maximum 

generalized rules can be achieved. The process 
for obtaining the maximum generalized rules is 
presented in [22]. As listed in Table 3, 14 
maximal generalized decision rules can be 
obtained from Table 2.  

 
TABLE 2  

REDUCED DECISION TABLE 

No. c1 c2 c3 c4 c5 d 
1 1 0 * * * 1 
2 2 0 * * * 1 
3 0 1 * 0 * 1or 5 
4 2 1 * * * 2 
5 0 * * * 2 2 
6 2 2 * * * 3 
7 0 0 * * 1 4 
8 1 1 1 * * 4 
9 1 * * 2 * 4 

10 * 0 * * 0 4 
11 * * 0 1 * 5 
12 0 * 0 * * 5 
13 0 1 1 * * 4 or 5 
14 1 2 * * * 5 

*: don’t care 
 

TABLE 3  

MAXIMAL GENERALIZED DECISION RULES 

No. c1 c2 c3 c4 c5 d 
1 1 0 * * * 1 
2 2 0 * * * 1 
3 * 1 * 0 * 1 
4 2 1 * * * 2 
5 0 * * * 2 2 
6 2 * 0 * * 3 
7 * * * * 1 4 
8 1 1 * * * 4 
9 * * * 2 * 4 

10 * * * * 0 4 
11 0 * 1 * * 5 
12 * * 0 * * 5 
13 0 * 0 * * 5 
14 1 2 * * * 5 

 

4. TEST RESULTS 

The 12 samples listed in the Table 4 are used 
to test the diagnosis accuracies of the proposed 
approach and the conventional approach. 
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Experimental results demonstrate that the 
proposed approach has remarkable diagnosis 
accuracy (100%) than the existing method 
(83.3%) presented in [21]. 
 

TABLE 4  

TEST DATA 

U c1 c2 c3 c4 c5 fault RS-ANN RST 
1 0 1 1 2 1 5 5 5 
2 0 1 2 2 1 4 4 4 
3 2 1 2 1 2 2 2 2 
4 1 1 0 0 1 5 3 5 
5 1 0 2 2 1 4 4 4 
6 1 1 2 2 2 4 2 4 
7 1 1 0 1 1 2 2 2 
8 0 2 1 2 2 2 2 2 
9 1 2 2 1 0 5 5 5 

10 1 2 0 0 0 5 5 5 
11 2 1 0 0 1 3 3 3 
12 2 2 0 0 1 3 3 3 

Diagnosis accuracy 83.3% 100% 
 

5. CONCLUSIONS 

This paper has presented an effective and 
efficient approach to extract diagnosis rules from 
inconsistent and redundant data set of power 
transformers using rough set theory. The 
extracted diagnosis rules can effectively reduce 
input features, simplify knowledge representation 
and fault diagnosis task. After the fault diagnosis 
decision table is built using discretized attributes, 
the GA based optimization process is further used 
to achieve the minimal reduct of input attributes. 
Then, the process of rule simplification is used to 
obtain the maximal generalized decision rules, 
which can be derived from inconsistent and 
redundant information. The test results confirm 
that the proposed approach is much more 
diagnostically accurate than the existing methods. 
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