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Abstract— The Hughes phenomenon (or the 
curse of dimensionality) shows two essential 
directions for improving the classification 
performance on high-dimensional and small 
sample size (SSS) problems. One is to reduce 
the dimensionality of applied data by feature 
extraction or feature selection methods. The 
other is to increase the training sample size. In 
recent years some kernel-based feature 
extraction algorithms such as kernel principal 
component analysis (KPCA) have shown some 
appealing performances for various problems. 
These algorithms have the capabilities of 
handling extremely high-dimensional data and 
extracting nonlinear features. In this paper, an 
efficient nonparametric kernel-based feature 
extraction algorithm, namely kernel fuzzy 
feature extraction (KFFE), is proposed. In 
addition, two techniques, eigen-decomposition 
and regularization, are applied to the KFFE 
for mitigating the SSS problem. Two face 
databases are employed to confirm the 
effectiveness of the proposed algorithm. The 
experimental results demonstrate that the 
proposed KFFE obtains more satisfactory 
results as compared with some other kernel-
based algorithms. 
 
Keywords—curse of dimensionality, feature 
extraction, dimension reduction, small sample 
size problem, face recognition, kernel method  

1. INTRODUCTION 

Dimension reduction is an important scheme 
for high-dimensional classification problems, 
which aims to mitigate the Hughes phenomenon 
[1] (or the curse of dimensionality [2]) or other 
undesired properties of high-dimensional spaces 
so as to enhance classification performance. 
Linear discriminant analysis (LDA) [3] is one of 
the most well-known dimension reduction 
methods and has been successfully applied to 

many classification problems. The purpose of 
LDA is to find a linear transformation that can be 
used to project data from a high-dimensional 
space into a low-dimensional subspace with 
maximized class separability. The features 
extracted by LDA, however, are only linear that 
may fail for nonlinear problems. Besides, the 
LDA-like algorithms often suffer from handling 
extremely high-dimensional and small sample 
size (SSS) data, e.g., face image data. The SSS 
problem has significant influences on the 
performance of a pattern recognition system [4-6]. 
The face recognition problem is an illustration of 
extremely high-dimensional data with small 
sample size. For instance, a face image of size 
64×64 pixels will be extended to a feature vector 
with 4096 dimensions. Then, the scatter matrices 
of classical LDA are of size 4096×4096, this will 
lead to a computational problem of handling such 
a big matrix. In other words, the drawback of 
general feature extraction methods is that the size 
of the matrix is proportional to the dimensionality 
of the data points.  

In recent years, the kernel-based feature 
extraction algorithms are usually applied for 
overcoming the difficulties of handling extremely 
high-dimensional data and solving nonlinear 
problems simultaneously [7-9]. The study of 
kernel methods [10, 11] has gradually become an 
important theme due to the success of support 
vector machines (SVMs) [12] for pattern 
recognition in various fields. Generally speaking, 
any kernel method comprises two parts: a module 
that performs the mapping into the so-called 
embedding or feature space and a learning 
algorithm designed to discover linear patterns in 
that space [10]. There are two main fascinating 
properties of kernel-based algorithms in practical 
applications. First, the linear patterns can be 
represented efficiently via kernel trick [11, 12] 
without computing their coordinates explicitly; in 
other words, the algorithms can be implemented 
in terms of pairwise inner products in feature 
space and the inner products can be calculated 



 

directly from the original data by employing a 
kernel function. Second, a linear relationship can 
be found in the feature space, which is equivalent 
to seeking the nonlinear relationship in the 
original space. From the aforementioned 
descriptions, the kernel-based algorithms can not 
only provide an alternative framework for finding 
the nonlinear relationship in original space but 
also reveal the importance of constructing new 
linear models in the future. 

Two well-known kernel-based feature 
extraction methods, kernel principle component 
analysis (KPCA) [7] and generalized 
discriminant analysis (GDA) [8] (or kernel Fisher 
discriminant analysis; KFDA [13]), are the 
nonlinear extension of the classical PCA and 
LDA, respectively. They have been applied 
successfully in various problems of pattern 
recognition. As we know, the kernel-based 
feature extraction algorithms often encounter the 
SSS problem because the dimensionality of the 
feature space is extremely high or even infinite. 
Some techniques are involved to alleviate the 
SSS problem for kernel-based feature extraction 
models [8, 9, 13, 14]. KFDA [13] uses the 
technique of making the inner product matrix 
nonsingular by adding a multiple of the identity 
matrix. GDA [8] employs the QR decomposition 
technique to avoid the singularity by removing 
the zero eigenvalues. KDA/QR [9] and 
KDA/GSVD [14] are the nonlinear generalization 
of LDA/QR [15] and LDA/GSVD [16], 
respectively. LDA/QR is the LDA algorithm 
based on QR decomposition and LDA/GSVD is 
on generalized singular value decomposition 
(GSVD). Three categories for circumventing the 
singularity problem are described in [17]. 

In this paper, we propose a novel and 
efficient kernel-based feature extraction 
algorithm referred to as kernel fuzzy feature 
extraction (KFFE) which is the nonlinear 
extension of the fuzzy linear feature extraction 
(FLFE). For solving the SSS problem, two 
techniques are sequentially introduced to KFFE. 
The eigenvectors decomposition is first employed 
and the regularization technique is then taken. 
The effectiveness of the proposed KFFE is 
evaluated by means of two popular face 
recognition databases. The problem of face 
recognition is a typical case having small sample 
size and extremely high dimension, which is 
referred to as one of the most challenging 
applications in the pattern recognition. The 
experimental results exhibit the proposed KFFE 
provide a more stable and applicable framework 

for face recognition problem, as observed from a 
comparison with some other algorithms. 

In the remainder of this paper, two popular 
kernel-based feature extraction methods, KPCA 
and GDA, are reviewed in Section 2. Then the 
proposed KFFE and its corresponding linear 
algorithm, FLFE, are described in detail in 
Section 3. Experimental designs and results are 
presented in Section 4 with conclusions given in 
Section 5. 

2. KPCA AND GDA 

Let ©  be a nonlinear mapping from the input 
space Rn into the feature space F  

© : Rn ! F ; x 7! ©(x) 
where the feature space F  could have an 
arbitrarily large dimension or possibly infinite. 
Let ªXY = f(x1; y1); : : : ; (xN ; yN)g  denote a 
training set of observations, where the training 
sample x` 2 Rn  and its corresponding label 
y` 2 Y = f1; : : : ; Lg where L denotes the number 
of classes. Hence, the mapped dataset in feature 
space F  is ªXY = f(©(x1); y1); : : : ; (©(xN ); yN )g. 
Suppose the number of training samples in class i 
is Ni , thus we have 

PL
i=1 Ni = N . Let 

· : Rn £Rn !R  denote the kernel function 
which is employed to express the computation of 
inner product of the mapped samples in F , for 
example, ·(xi; xj) = ©(xi)

T ©(xj) =< ©(xi);©(xj) >. 
In addition, X T

i = [©(x
(i)
1 ); : : : ;©(x

(i)
Ni

)]   and 
X T = [X T

1
; : : : ;XT

L ] denote the transpose of data 
matrix of class i  and overall data matrix in 
feature space F , respectively. Then the kernel 
matrix K  can be calculated by XXT , i.e., 
K = XXT = (Kpq)p=1;:::;L

q=1;:::;L
, where 

Kpq = XpX T
q = (·ij) i=1;:::;Np

j=1;:::;Nq

 and ·ij = ·(xi; xj) . 

Two commonly used kernel functions are 
summarized as follows 

Polynomial : ·(x; y) = (< x; y > +1)d 
Gaussian RBF: ·(x; y) = exp(¡0:5kx¡ yk2=¾2) 

where d and ¾ are the parameters of polynomial 
and Gaussian RBF kernels, respectively. 

2.1. KPCA 

KPCA performs classical PCA in feature 
space F . For simplicity, the samples are assumed 
to be centered, that is, each sample is shifted by 
the global mean. Hence the covariance matrix 
can be constructed by 



 

C =
1

N

NX
`=1

©(x`)©(x`)
T =

1

N
X TX :      (2.1) 

The feature vectors are then computed by solving 
the following eigenvalue problem 

¸v = Cv,                             (2.2) 
where ¸  and v  are the eigenvalue and 
eigenvector of C, respectively. Let (¸; v) denote 
the eigen-pair of C . By the property of the 
reproducing kernels [11], the eigenvector v can 
be represented by a linear combination of all 
training samples in feature space F , we then 
have 

v =
NX

`=1

®`©(x`) = X T Ã,              (2.3) 

where Ã represents the column vector of 
expansion coefficients ®1; : : : ; ®N .  
Combine (2.1) and (2.3) into (2.2) and multiply 
with X  from the left, thus we obtain 

N¸KÃ = K2Ã.                       (2.4) 
To find Ã means solving the expansion 
coefficients ®1; : : : ; ®N  that can be obtained by 
solving the following eigenvalue problem 

N¸Ã = KÃ.                         (2.5) 
By the assumption that the training samples are 
centered, we have to substitute the kernel matrix 
K with 
 K̂ = K¡ 1NK ¡K1N + 1NK1N ,             (2.6) 
where (1N )pq = 1=N for all p; q: 
Let (¸h; Ãh)  be the eigen-pair of K̂  and 
¸1 ¸ ¸2 ¸ ¢ ¢ ¢ ¸ ¸m. The orthonormal eigenvector 
vh of C can be 

vh =
1p
¸h

XÃh; h = 1; : : : ;m.                 (2.7) 

Finally, the h th component of a new pattern z 
with KPCA can be computed by projecting the 
mapped pattern ©(z) onto vh 

< vh;©(z) >=
NX

`=1

®h` < ©(x`);©(z) >=
NX

`=1

®h`·(x`; z)

.  (2.8)  
then the nonlinear principle components can be 
obtained through a kernel function ·, as shown 
from (2.8).  
As is well known, the features extracted by PCA 
focus on discovering the most expressive but the 
most discriminating ones [18]; hence, KPCA 
remains the same. Consequently, the performance 
of KPCA is not so stable for classification tasks. 

2.2. GDA 
GDA extracts nonlinear discriminant 

features by performing LDA in the high 
dimensional feature space F . The between-class 

scatter matrix SGDA
b , within-class scatter matrix 

SGDA
w  and total scatter matrix SGDA

t  of GDA are 
defined as 

SGDA
b =

LX
i=1

Pi(Mi ¡M)(Mi ¡M)T ,    (2.9) 

SGDA
w =

LX
i=1

Pi

NiX
`=1

(©(x
(i)
` )¡Mi)(©(x

(i)
` )¡Mi)

T ,       

(2.10) 
SGDA

t = SGDA
b + SGDA

w ,                        (2.11) 
where L is the number of classes, Pi is the prior 
probability of class i, Mi is the mean vector of 
class i and M is the global mean. 

Since GDA performs LDA in feature space 
F , it also aims to find a set of optimal 
eigenvectors by maximizing the Fisher criterion 

J(A) = argmax

A

ATSGDA
b A

ATSGDA
t A

.         (2.12) 

The maximization of (2.12) is equivalent to the 
following generalized eigenvalue resolution 

SGDA
b vh = ¸hSGDA

t vh,          (2.13) 
where (¸h; vh)  is the eigen-pair of 
(SGDA

t )¡1SGDA
b  in the feature space F  and 

¸1 ¸ ¸2 ¸ ¢ ¢ ¢ ¸ ¸m:  
Then, the transformation matrix A is 

A = [v1; : : : ; vm]. 
As mentioned previously, the eigenvector vh can 
be represented by a linear combination of all 
training samples in feature space F  

vh =
LX

i=1

NiX
`=1

®i`©(x
(i)
` ) = X T Ãh.        (2.14) 

The training samples are assumed to be centered 
in feature space F . Consequently, the SGDA

b  and 
the SGDA

t  can be derived as 
 SGDA

b =
1

N
X TWX ,                (2.15) 

SGDA
t =

1

N
X TX ,                   (2.16) 

where W = diag(1N1
; : : : ;1NL

)  and 
(1Ni

)pq = 1=Ni for all p; q. 
Applying (2.14)-(2.16) into (2.13) and multiply 
with X  from the left, we can then obtain the 
following equation 

KWKÃh = ¸KKÃh.                      (2.17) 
Here, K is the same as K̂ in (2.6). 
Next, the eigenvectors decomposition of kernel 
matrix K  is employed for stabilizing and 
improving the resolution in GDA. 

Suppose K = P¡PT , where P  is an 
orthonormal matrix and ¡ is the diagonal matrix 
of nonzero eigenvalues. Let ¯h = ¡PT Ãh  then 
(2.17) can be converted to  

PTWP¯h = ¸¯h,                   (2.18) 



 

thus ¯h is the eigenvector of PTWP . After ¯h is 
obtained, the Ãh can be computed by P¡¡1¯h and 
divided by 

q
ÃT

hKÃh  to get normalized vectors vh. 
Finally, the projection components of an 
unknown mapped sample ©(z) can be expressed 
as 

< vh; ©(z) >=
LX

i=1

NiX
`=1

®i`·(x
(i)
` ; z); for h = 1; : : : ;m

.        (2.19) 
However, as the same with LDA, there are 

only L¡ 1  features which can be extracted at 
most by using GDA. 

3. KERNEL FUZZY FEATURE 
EXTRACTION 

In this section, the idea of FLFE is briefly 
introduced and then the detailed deduction of 
KFFE is demonstrated. 
3.1 Fuzzy Linear Feature Extraction (FLFE) 

The main idea of FLFE originates from the 
important finding of nonparametric discriminant 
analysis (NDA) [3, 19] which first exhibits an 
essential observation that the training samples 
approaching the class boundary should be 
emphasized and given more weights. The 
nonparametric weighted feature extraction 
(NWFE) [20] verifies the practicability of the 
important observation on hyperspectral image 
classification. Unlike NDA and NWFE, which 
implement the observation by using Euclidean 
distance directly, we discover the fuzzification 
procedure of the fuzzy K-nearest neighbor 
(FKNN) algorithm [21] that can be employed to 
find the samples near the class boundary more 
intuitively than NDA and NWFE. In addition, the 
membership values are introduced to the design 
of FLFE. 

The fuzzification procedure of FKNN 
algorithm is 

 ¹j(x
(i)
` ) =

½
0:51 + 0:49£ nj

k if j = i
0:49£ nj

k if j 6= i
 ,    (3.1) 

where  is the th training sample in class i,  
is the number of samples that belongs to class j, 
and  is a given constant which implies that -
nearest neighbors with respect to  are included 
for computing the membership grades of . In 
other words, we have . An 
example of two classes is illustrated in Fig. 1 and 
the parameter k is set to 3. From Eq. (3.1) we can 
find that the membership value  is greater 
than or equal to 0.51 due to FKNN is a 

supervised learning method and the label of  is 
already known. It is reasonable to give  
more than 0.50 even no neighbor (among ) is 
from the same class. The remaining 0.49 is 
shared according to the ratio of  to . From 
(3.1), for , a membership vector 

 can be computed, 
in which each component  denotes the grade with 
respect to each class. From the viewpoint of , 
the bigger is the membership grade, the closer 
will be the class. Figure 2 illustrates the idea of 
applying the membership vector to find the 
samples approaching to the class boundary. The 
blue circled samples are regarded as those located 
near the class boundary. 

 

 

  

Fig. 1 Illustration of the computation of 
membership grades of sample x for . 
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Fig. 2 Illustration of the boundary points detected 
by fuzzy membership. 

The fuzzy within-class scatter matrix SF
w  and 

fuzzy between-class scatter matrix SF
b  are defined 

as follows. 

SF
w =

LX
i=1

Pi

NiX
`=1

a
(i;i)
` (x

(i)
` ¡Mi(x

(i)
` ))(x

(i)
` ¡Mi(x

(i)
` ))T

,    (3.2) 

SF
b =

LX
i=1

Pi

LX
j=1
j 6=i

NiX
`=1

b
(i;j)
` (x

(i)
` ¡Mj(x

(i)
` ))(x

(i)
` ¡Mj(x

(i)
` ))T

,(3.3) 

where Pi  and  Mi(x
(i)
` ) =

1

k

kX
s=1

x(i)
sNNMi(x

(i)
` ) =

1

k

kX
s=1

x(i)
sNN  (or Mj(x

(i)
` )) 

are the prior probability and the local mean of x(i)
`  

in class i  (or j ), respectively. Mi(x
(i)
` )  is 



 

computed by the  kk -nearest samples of x(i)
`x
(i)
`  in 

class ii . In addition, a
(i;i)
`  and b

(i;j)
`  are the 

weighting factors of sample x(i)
`  for within-class 

and between-class scatter matrices, respectively. 
They are defined as follows 

a
(i;i)
` = 1¡ [¹i(x

(i)
` )=

NiX
`=1

¹i(x
(i)
` )], 

b
(i;j)
` = ¹j(x

(i)
` )=

NiX
`=1

¹j(x
(i)
` ). 

The designs of a(i;i)
`  and b(i;j)

`  confirm that the 
samples near class boundary can gain more 
weights. Unlike LDA, FLFE is nonparametric 
and is capable of extracting more than L¡ 1 
features, which is usually necessary for real data 
classification [6], [20]. 

3.2 Kernel Fuzzy Feature Extraction (KFFE) 
Some key components must be taken into 

consideration before constructing the KFFE. The 
first one is about the distance measure in feature 
space F  because the membership values have to 
be calculated through 

¹j(©(x
(i)
` )) =

½
0:51 + 0:49£ nj

k if j = i
0:49£ nj

k if j 6= i
    (3.4) 

The second focal point is how the features are 
extracted by KFFE via kernel trick. Finally, we 
have to exhibit the projection of an unknown 
sample in feature space F . In the following, we 
primarily reformulate the fuzzy within-class and 
between-class scatter matrices in feature space F . 

The fuzzy within-class scatter matrix in 
feature space F , SKF

w , is defined as 

SKF
w =

LX
i=1

Pi

NiX
`=1

a
(i;i)
` (©(x

(i)
` )¡Mi(©(x

(i)
` ))¦

(©(x
(i)
` )¡Mi(©(x

(i)
` ))T ,     (3.5) 

where Mi(©(x
(i)
` ) is the local mean of ©(x

(i)
` ) in 

class i in feature space F  and 

a
(i;i)
` = 1¡ [¹i(©(x

(i)
` ))=

NiX
`=1

¹i(©(x
(i)
` )]. 

The fuzzy between-class scatter matrix in feature 
space F , SKF

b , is given by 

SKF
b =

LX
i=1

Pi

LX
j=1
j 6=i

NiX
`=1

b
(i;j)
` (©(x

(i)
` )¡Mj(©(x

(i)
` ))¦

                          (©(x
(i)
` )¡Mj(©(x

(i)
` ))T ,    
(3.6) 

where b(i;j)
` = ¹j(©(x

(i)
` ))=

PNi

`=1 ¹j(©(x
(i)
` )). 

For measuring the squared distance between 
samples x and y in feature space F , the following 
formulation is used [11]: 

k©(x)¡ ©(y)k =
p

·(x; x) + ·(y; y)¡ 2·(x; y),   
(3.7) 

where · is a kernel function. From (3.7), we find 
that the distance can be directly computed via 
kernel function. In the following, we demonstrate 
how the features are extracted by KFFE via 
kernel trick. 
Definition 1. The local mean of ©(x

(i)
` ) in calss j 

in feature space F  is defined by 

Mj(©(x
(i)
` )) =

1

k

kX
s=1

©(x
(j)
sNN) = XT

j I
(j)
` ,       (3.8) 

where X T
j = [©(x

(j)
1 ); : : : ;©(x

(j)
Nj

)] and 
I
(j)
` = [i1; : : : ; iNj

]T ,8it 2 f 1
k ; 0g; t = 1; : : : ;Nj and PNj

t=1 it = 1. 
Note that I(j)

`  denotes a vector with components 
1=k  or 0, representing the contribution of each 
data point for computing Mj(©(x

(i)
` )). 

Theorem 2. The within-class scatter matrix can 
be expressed as 

SKF
w = X T WX ,                              (3.9) 

where W = W1 ¡W2 ¡WT
2 + W3 with 

W1 = diag(P1¤
(1;1)
w ; : : : ; PL¤(L;L)

w ), 
W2 = diag(P1¤

(1;1)
w I(1;1); : : : ; PL¤(L;L)

w I(L;L)),  
W3 = diag(P1(I

(1;1))T ¤(1;1)
w I(1;1); : : : ; PL(I(L;L))T ¤(L;L)

w I(L;L)), 

¤
(i;i)
w = diag(a

(i;i)
1 ; : : : ;a

(i;i)
Ni

)  and 
I(i;i) = [I

(i)
1 ; : : : ; I

(i)
Ni

]. 
 
Theorem 3. The between-class scatter matrix 
can be expressed as 

SKF
b = X T (B¡Wb)X              (3.10)                       

where B = B1 ¡B2 ¡BT
2 + B3 and 

Wb = Wb1 ¡Wb2 ¡WT
b2 + Wb3 with 

B1 = diag(P1

LX
j=1

¤
(1;j)
b ; : : : ; PL

LX
j=1

¤
(L;j)
b ), 

B2 =

2664
P1¤

(1;1)
b I(1;1) : : : P1¤

(1;L)
b I(1;L)

...
. . .

...

PL¤
(L;1)
b I(L;1) : : : PL¤

(L;L)
b I(L;L)

3775, 
B3 =

LX
i=1

Pidiag((I(i;1))T ¤
(i;1)
b I(i;1); : : : ; (I(i;L))T ¤

(i;L)
b I(L;L))

¤
(i;j)
b = diag(b

(i;j)
1 ; : : : ;b

(i;j)
Ni

),  I(i;j) = [I
(j)
1 ; : : : ; I

(j)
Ni

] 
WB1 = diag(P1¤

(1;1)
b ; : : : ; PL¤

(L;L)
b ),  

WB2 = diag(P1¤
(1;1)
b I(1;1); : : : ; PL¤

(L;L)
b I(L;L)), 

and 
WB3 = diag(P1(I

(1;1))T ¤
(1;1)
b I(1;1); : : : ; PL(I(L;L))T ¤

(L;L)
b I(L;L))

 
 
 



 

For similar proofs of the theorems, please 
refer to [22]. Now our goal is to find the 
transformation matrix A  that maximizes the 
criterion 

J(A) = argmax

A

tr((ATSKF
w A)¡1(ATSKF

b A)).  

(3.11) 
The maximization of (3.11) is equivalent to solve 
the generalized eigenvalue resolution 

SKF
b vh = ¸iSKF

w vh,                      (3.12) 
where (¸h; vh) is the eigen-pair of (SKF

w )¡1SKF
b  in 

the feature space F  and ¸1 ¸ ¸2 ¸ ¢ ¢ ¢ ¸ ¸m: Note 
that m is the dimension of the transformed space. 
Consequently, the transformation matrix A can be 
expressed as 

A = [v1; : : : ; vm]. 
Again, the eigenvector vh lies in the span of all 
training samples in feature space F , then we have 

vh = X T Ãh.                      (3.13) 
Thus, the transformation matrix A can be 
represented as 
A = [v1; : : : ; vm] = X T [Ã1; : : : ; Ãm] = X T ª,  (3.14) 
where ª = [Ã1; : : : ; Ãm]. 
Therefore, from (3.9) to (3.14), to find A is 
equivalent to finding ª by 
ª = argmax

ª

tr((ªTKWKª)¡1(ªT (K(B¡Wb)Kª)).     

(3.15) 
Then Ãh  can be solved through the generalized 
eigenvalue problem 

¸(KWK)Ãh = K(B¡Wb)KÃh.        (3.16) 
From (3.16), we achieve the second goal that the 
feature Ãh can be solved via kernel trick. 

In the following, the same eigenvectors 
decomposition of the kernel matrix K  is 
employed as in GDA. Again, let K = P¡PT  and 
¯h = ¡PT Ãh, then ¯h can be derived by solving 
the following generalized eigenvalue problem 

¸(PT WP )¯h = PT (B¡Wb)P¯h,       (3.17) 
Then ¯h  is the eigenvector of 
(PTWP )¡1PT (B¡Wb)P . However, the 
estimation of (PTWP )¡1  may be singular or 
nearly singular. The following regularization is 
therefore taken for circumventing the singularity 
problem 
PT WP = (1¡ ¹)(PT WP ) + ¹diag(PT WP ), 

(3.18) 
where ¹ is a regularization parameter. 
After ¯h  is found, the Ãh  can be computed by 
P¡¡1¯h  and divided by 

q
ÃT

hKÃh  to get 
normalized vectors vh . We then obtain the 
transformation matrix A. 

Finally, the projected components of an 
unknown mapped sample ©(z)  in F  can be 
calculated by 

 

< vh; ©(z) >=
LX

i=1

NiX
`=1

®i`·(x
(i)
` ; z); h = 1; : : : ;m.     

(3.19) 
Note that the projected components of an 
unknown sample are also computed by virtue of 
kernel trick. 
The algorithm of KFFE is described as follows. 

1. Calculate the membership values of each 
training sample of each class in feature 
space F  by (3.4). 

2. Compute ¤(i;i)
w  and ¤(i;j)

b . 
3. Compute matrices B;Wb;W  and kernel 

matrix K. 
4. Decompose K  using eigenvectors 

decomposition, i.e., K = P¡PT . 
5. Estimate PTWP  by (3.18) and then 

compute ¯h  by (3.17), finally compute 
Ãh and vh. 

6. Calculate the projection components of 
each sample by (3.19). 

4. EXPERIMENT DESIGN AND 
RESULTS 

4.1. Data Set 
In this study, two widely used face databases, 

AT&T1 and UMIST2, are employed to evaluate 
the effectiveness of the proposed KFFE. Each 
image in the two databases is represented as a 
vector with 10304 dimensions. Three other 
kernel-based feature extractions, GDA, KPCA 
and KDA/QR 3  with three kernel functions are 
included to investigate the performances on the 
two face databases. The three kernel functions are 
RBF kernel function and polynomial kernel 
function with degree 1 and 2, denoted as RBF, 
poly1 and poly2, respectively. Through this 
experiment, the classifier used is 1-nearest 
neighbor (1NN) and the number of features 
extracted by these algorithms is L¡ 1 . We 
randomly select p samples of each person from 
the databases for training and the rest for testing. 
The trials repeat 20 times for each case p and the 
                                                 
1 
http://www.cl.cam.ac.uk/research/dtg/attarchive/f
acedatabase.html. 
2 http://www.cs.toronto.edu/~roweis/data.html. 
3 http://www.cs.umn.edu/~jieping/Kernel. 



 

average recognition accuracy of each algorithm is 
reported. Most of the results in this study are 
mainly based on STPRtool,4 a toolbox build on 
MATLAB for pattern recognition, for obtaining 
reliable results. It implements a selection of 
statistical pattern recognition methods including 
GDA and KPCA. 

The AT&T face database, formerly the ORL 
database of faces, consists of 10 different images 
of each of 40 distinct persons. These face images 
were taken between April 1992 and April 1994 at 
the Olivetti Research Laboratory. For some 
subjects, the images were taken at different times, 
varying the lighting, facial expressions (open / 
closed eyes, smiling / not smiling) and facial 
details (glasses / no glasses). All the images were 
taken against a dark homogeneous background 
with the subjects in an upright, frontal position. 
The size of each image is   pixels with a 256-
level gray scale, which will be extended to a 
feature vector with 10304 dimensions. Some 
samples of a person in the database are 
demonstrated in Fig. 3. UMIST face database 
manually cropped by Dr. Daniel Graham is a 
multi-view dataset consisting of 575 images of 20 
persons. The number of samples of each person is 
describes in Table 1. Each people covers a wide 
range of poses from profile to frontal views, 
some example images of one people are shown in 
Fig. 4. The size of each image is the same as that 
in AT&T database, so the dimensionality is 
10304. 

TABLE 1 
 THE NUMBER OF SAMPLES OF EACH PERSON 

IN UMIST DATABASE. 
P 1 2 3 4 5 6 7 8 9 10
# 38 35 26 24 26 23 19 22 20 32
P 11 12 13 14 15 16 17 18 19 20
# 34 34 26 30 19 26 26 33 48 34
 

    

    
Fig. 3 Samples from the AT&T database. 
                                                 
4 
http://cmp.felk.cvut.cz/cmp/software/stprtool/inde
x.html/. 

 

  

 
Fig. 4 Some samples of one person come from 
the UMIST database. 

4.2. Experimental Results 
The results on AT&T database are 

demonstrated in Fig. 5 and Table 2. Fig. 5 
indicates the average recognition rate versus the 
subspace dimension for the four used algorithms, 
whereas the Gaussian RBF kernel is applied. In 
addition, the best average recognition rate versus 
the subspace dimension shown in the parentheses 
is listed in Table 2. From an overall viewpoint, 
the proposed KFFE obtains satisfactory results, 
no matter how many training samples are used 
and what kinds of kernel functions are applied. 
The recognition rate achieved by KDA/QR is 
competitive with KFFE when RBF kernel 
function is applied; however, it doesn’t perform 
well when polynomial kernel functions are 
employed. The performance of KPCA is similar 
no matter what kernels are used on this database. 
In addition, GDA apparently has the worst 
performances than the other algorithms in most 
cases. To give more insight into these figures, the 
accuracy of KFFE increases very rapidly as the 
number of features increases, as compared with 
the other algorithms. In other words, KFFE 
achieves satisfactory results by only using fewer 
features and the results even over the best of 
some algorithms. The recognition rate of KFFE is 
96.1% in the case p = 5, which is more than that 
of GDA in the case p = 7. For achieving a similar 
level of recognition rate, KFFE requires lower 
dimensions and smaller training samples, as is 
inferred from a comparison with the other 
algorithms. When polynomial kernel functions 
are applied, the differences of performance 
between KFFE, GDA and KDA/QR are larger 
than that of using RBF kernel functions. 

The results on AT&T database are 
demonstrated in Fig. 6 and Table 3. Fig. 6 
indicates the average recognition rate versus the 
subspace dimension for the four used algorithms, 



 

whereas the Gaussian RBF kernel is applied. 
Furthermore, the best accuracy versus the 
subspace dimension is summarized in Table 3. As 
the results demonstrated on AT&T database, the 
proposed KFFE obviously obtains more 
satisfactory results than the other algorithms, no 
matter how many training samples are used and 
what kind of kernel function in included. The 
differences of performance between KFFE and 
the other algorithms are more significant on this 
database than that on the AT&T database. KFFE 
outperforms the other algorithms more than 4% 
when p is less than 6 for all kernel functions. The 
recognition rate of KFFE increases notably than 
that of the other algorithms, which is similar to 
the performances on AT&T database. As 
observed from the line graph, when only 8 to 10 
features are used, the results of KFFE are close to 
its own best accuracy, and over the best of the 
other algorithms. Especially, when the value of p 
is more than 6, an interesting observation is 
found that the number of used features 
corresponding to the best accuracy is about 10, 
that is , we can save the computational time of 
classification process to certain extent by using 
KFFE. 

 
TABLE 2 

THE BEST AVERAGE RECOGNITION RATE WITH 
THE SUBSPACE DIMENSION ON AT&T 

DATABASE. 
p Kerf. KFFE GDA KPCA KDA/QR

3 
RBF 0.918(39) 0.819(39) 0.880(39) 0.900(39) 
Poly1 0.917(39) 0.816(39) 0.880(39) 0.873(39) 
Poly2 0.916(39) 0.871(39) 0.871(33) 0.834(39) 

4 
RBF 0.933(39) 0.834(39) 0.909(36) 0.925(38) 
Poly1 0.933(39) 0.836(39)  0.910(37)  0.913(39) 
Poly2 0.935(39) 0.902(39)  0.903(35)  0.890(39) 

5 
RBF 0.961(39) 0.877(39)  0.939(38)  0.951(38) 
Poly1 0.961(39) 0.861(39)  0.939(38)  0.942(39) 
Poly2 0.961(39) 0.923(38) 0.929(39)  0.924(39) 

6 
RBF 0.972(23) 0.884(39)  0.962(39)  0.968(33) 
Poly1 0.972(23) 0.883(39)  0.962(39)  0.958(39) 
Poly2 0.974(39) 0.941(39)  0.956(39)  0.948(39) 

7 
RBF 0.977(33) 0.911(39) 0.966(30) 0.972(34) 
Poly1 0.978(33) 0.899(39) 0.966(30) 0.969(38) 
Poly2 0.980(39) 0.945(39) 0.960(24) 0.949(36) 

 
 
 
 
 
 
 
 
 
 

 
TABLE 3 

THE BEST AVERAGE RECOGNITION RATE WITH 
THE SUBSPACE DIMENSION ON UMIST 

DATABASE. 
p Kerf. KFFE GDA KPCA KDA/QR

3 
RBF 0.822(19) 0.727(19) 0.695(18) 0.739(18) 
Poly1 0.822(19) 0.728(19) 0.695(18) 0.728(19) 
Poly2 0.805(19) 0.759(19) 0.694(18) 0.722 (19) 

4 
RBF 0.869(19) 0.793(19) 0.768(19) 0.805(19) 
Poly1 0.869(19) 0.792(19) 0.768(19) 0.811(19) 
Poly2 0.858(19) 0.823(19) 0.764(18) 0.792(18) 

5 
RBF 0.910(19) 0.837(19) 0.807(19) 0.847(14) 
Poly1 0.910(19) 0.828(19) 0.807(19) 0.854(19) 
Poly2 0.904(19) 0.867(19) 0.802(17) 0.845(18) 

6 
RBF 0.942(7) 0.888(19) 0.860(18) 0.899(16) 
Poly1 0.942(19) 0.891(19) 0.860(18) 0.905(19) 
Poly2 0.937(19) 0.910(19) 0.853(19) 0.896(15) 

7 
RBF 0.960(9) 0.911(19) 0.892(19) 0.924(15) 
Poly1 0.958(10) 0.910(19) 0.892(19) 0.931(19) 
Poly2 0.951(19) 0.928(19) 0.888(19) 0.917(17) 
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(d) 

Fig. 5 (a) to (d) depict the best average 
recognition rate versus subspace dimension when 
applying the RBF kernel function on AT&T face 
dataset in the cases of , 
respectively. 
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Fig. 6 (a) to (d) depict the average recognition 
rate versus the subspace dimension with the RBF 
kernel function on the UMIST database in the 
cases of , respectively. 

5. CONCLUSIONS 

In this paper, we proposed an efficient and 
applicable kernel-based feature extraction 
algorithm, KFFE, and evaluated its effectiveness 
on face recognition problem. In KFFE, the SSS 
problem was alleviated by introducing the eigen-
decomposition and regularization techniques 
simultaneously. The experimental results showed 
that KFFE outperformed the other algorithms, 
GDA, KPCA and KDA/QR. The performance 
difference between KFFE and the other 
algorithms is particularly significant when using 
small training samples. Moreover, another 
essential advantage when applying KFFE to face 
recognition problem is that some computational 
time can be saved by scarifying only little 
classification accuracy 
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