
1

Hash-Based Indexing for Cloud Databases
Yu-lung Lo1, Choon-Yong Tan2, Min-Hsuan Lai3

Department of Information Management, Chaoyang University of Technology
168, Jifeng E. Rd., Wufeng District, Taichung, 41349 Taiwan

1yllo@cyut.edu.tw
2kevin861119@hotmail.com
3s10014618@cyut.edu.tw

Abstract— Currently, there are many Cloud
platform providers support large-scale
database services. However, most of these
Cloud platform architectures only support
simple keyword-based queries and can’t
response complex query efficiently due to lack
of efficient in multi-attribute index techniques.
The existing multi-attribute index structures
for Cloud platform are based on traditional R-
tree, k-d tree and Quad tree, but there is still
without study for evaluating these schemes yet.
In this paper, we propose a new multi-
attribute index structure, which combines
hash-based scheme and tree indexing, for
Cloud platform to manage the huge and
variety data. Our experimental results
demonstrate that our proposed index structure
outperforms existing tree-based only indexing.

Keywords—cloud computing, cloud database,

cloud data indexing, multi-attribute index,
hashed distribution

1. INTRODUCTION

 The Cloud computing is an emerging business
solution. It can address the requirements of each
software service to distribute the storage space
and all kinds of the service on the resource pool.
The user does not need to purchase any hardware
or software and flexible to upgrade amount of
resource according their own actual demand from
provider. The Cloud system generated business
opportunity and future trend in the software
industry. The Cloud computing is a virtual
computation resource which may maintain and
manage by itself, normally for a lot of large-scale
server cluster structures including computation
servers, storage servers, the bandwidth resources
and so on [23]. Cloud platform compose by a
number of computer resources and store a large
number of data, and provide services to millions
of global user. Resource allocation usually
computes in Cloud platform and make user feel

that owns personal infinite resources. Providing
scalable database services is one of most
important issue for many applications of the
Cloud platform. The Cloud platform simplifies to
provide a large-scale distributed database system
however performing indexing and searching in
such a database on the Cloud platform has
become new challenges to realize.

The traditional distributed system structure
lacks of scalability and reliability therefore it
cannot be directly applied to this new platform.
Due to the diversity of applications, database
services on the Cloud must support large-scale
data analytical tasks and high concurrent On-Line
Transaction Processing (OLTP) queries. When
unexpected large searching enquiries occur, it
may happen that users meet the situation of out of
supported by system resource and disable of
quality of service [25]. However, currently the
Cloud platform only supports simple keyword-
based queries. It can't answer complex queries
efficiently due to lack of efficient index
techniques. There were few research reports
proposed indexing schemes for Cloud platform to
manage the huge and variety data. These schemes
create global index for master nodes and local
index for each slave (or storage) node. To prevent
the bottleneck, the global index is distributed and
maintained in several master nodes. The local
index manages the local data in a slave node for
local data search and the global index manages
the tree node in local index for searching entries
of slave nodes. All these index structures are
based on existing index structures, such as R-tree
[8], k-d tree [6] and Quad tree [5], which can
support multi-attribute / multi-dimensional
indexing or spatial indexing. In this research, we
would like to survey and evaluate the existing
multi-attribute index schemes then develop a new
and more efficient multi-attribute indexing in
Cloud platform.
 The remaining of this paper is organized as
follows: in Section 2, we review the existing
multi-attribute indexing schemes for Cloud

2

platform. In Section 3, we discuss the hash based
indices. After that, our proposed hash-based
multi-attribute index structure for Cloud platform
is presented in Section 4. Moreover, we
demonstrate our experimental results for
comparing the proposed index scheme to existing
multi-attribute indexing structures in Section 5.
Finally, we give our conclusion in the last section.

2. RELATED WORKS

The concept of Cloud computing evolves
from internet search engines’ infrastructure. The
differences between Cloud computing and DBMS
are that the Cloud computing does not adopt
order-preserving tree indexes, such as B-tree or
hash table [7]. Aguilera et al. [1] proposed a
fault-tolerant and scalable distributed B-tree for
their Cloud systems. Although B-tree has been
widely used as single attribute index in database
systems, it is inefficient in dealing with indices
composed of multi-attributes [25]. To improve
the weakness of Cloud computing, to build a
multi-attribute index may support more types of
queries on Cloud computing platforms. Therefore,
Zhang et al. proposed an Efficient Multi-
dimensional Index with Node Cube for Cloud
computing system [25], Wang et al. built the RT-
CAN index in their Cloud database management
system [20], and Ding et al. presented the Quad-
tree based index structure for cloud data
management [4]. All these index schemes are
based on k-d tree, R-tree and Quad tree. The brief
introductions for these schemes as well as R-tree,
k-d tree and Quad tree are as follows.

2.1 Efficient Multi-dimensional Index with
Node Cube

In 2009, Xiangyu Zhang et al. [25] proposed
an efficient approach to build multi-dimensional
index for Cloud computing system. In this
approach, they build local k-d tree index for each
slave nodes due to k-d tree can efficiently support
point query, partial match query and range query.
To prune irrelevant nodes on query processing,
they construct a node cube for each slave node. A
node cube indicates the range of value on each
indexed attribute in this node. After they build a
cube for each slave node, they maintain the cubes
on master nodes with an R-tree. The reason of
choosing R-tree for cube information is that the
R-tree was designed for managing data regions
and in their scenario the cubes are multi-
dimensional data regions. They call this index

approach EMINC: Efficient Multi- dimensional
Index with Node Cube as shown in Figure 1.

With the node cube information in EMINC,
query processing can be improved by pruning
irrelative nodes in the nodes locating phase. And
in order to keep cube information available and
useful, insertion and deletion on slave nodes that
may change their cubes should inform master
nodes for update of cube.

The EMINC has some limitations and under
some occasions, the performance could still be
poor. The authors extend EMINC to use multiple
node cubes to represent a slave node in which
data records on a slave node will be represented
by multiple node cubes. The shape and amount of
node cubes is dependent on the method used for
cutting the original single node cube.

Figure 1. Framework of EMINC [25]

2.2 RT-CAN Index

The RT-CAN is a multi-dimensional indexing
scheme proposed by Jinbao Wang et al. in 2010
[20]. RT-CAN integrates CAN-based routing
protocol [18] and the R-tree based indexing
scheme to support efficient multi-dimensional
query processing in a Cloud system.

CAN (Content Addressable Network) [18] is
a scalable, self-organized structured peer-to-peer
overlay network. The RT-CAN index is built on a
shared-nothing cluster, where application data are
partitioned and distributed over different servers.
In this approach, the global index composes of
some R-tree nodes from the local indexes and is
distributed over the cluster. The global index can
be considered as a secondary index on top of the
local R-trees. This design splits the processing of

3

a query into two phases. In the first phase, the
processor looks up the global index by mapping
the query to some CAN nodes. These CAN nodes
search their buffered R-tree nodes and return the
entries that satisfy the query. In the second phase,
based on the received index entries, the query is
forwarded to the corresponding storage nodes,
which retrieve the results via the local R-tree. The
index structure and data service of RT-CAN is
shown in Figure 2.

Figure 2. Data service of RT-CAN index [20]

2.3 Quad-Tree Based Index Structure

A Quad tree [5] is a tree data structure in
which each region are defined by squares in the
plane, which are subdivided into four equal-sized
squares for any regions containing more than a
single point show in Figure 3. (These are also
called PR Quad trees, and we always refer to this
variant of Quad trees in this paper.) So each
internal node in the underlying tree has four
children and regions have optimal aspect ratios
(which is useful for many types of queries).
Unfortunately, the tree can have arbitrary depth,
independent even of the number of input points.
Even so, point insertion and deletion is fairly
simple. This data structure was named a Quad
tree by Raphael Finkel and J.L. Bentley in 1974.
A similar partitioning is also known as a Q-tree.

Figure 3. Nodes in a point Quad tree

 In 2011, Linlin Ding et al. proposed an efficient
quad-tree based index structure for cloud data
management [4]. This paper presents an efficient
quad-tree based multi-dimensional index
structure, called QT-Chord, which integrates
Chord-based routing mechanism and Quad tree
based index scheme to support efficient multi-
dimensional query processing in a cloud
computing system.
 There are two levels of QT-Chord index
structure, global index level and local index level
shown in Figure 4. Numerous compute nodes are
organized in a cloud computing system to provide
their services to end users. The data of user are
divided into data chunks and then stored on
different compute nodes. To realize efficient local
multi-dimensional data management, each
compute node builds its local index by an
improved MX-CIF Quad-tree index structure,
named IMX-CIF Quad tree.

Figure 4. Framework of Quad tree based multi-

attribute index [4]

2.4 k-d Tree
The k-d tree (short for k-dimensional tree) was

proposed by Jon Louis Bentley in 1975 [3]. The
k-d tree is a space-partitioning data structure for
organizing points in a k-dimensional space. For
example, the definition of a 2-d tree is a binary
tree satisfying the following two conditions: (with
root a level 0)

1. For node N with level (N) is even, then every
node M under N.llink has the property that
M.xval < N.xval, and every node P under
N.rlink has the property that P.xval ≧ N.xval.

2. For node N with level (N) is odd, then every
node M under N.llink has the property that
M.yval < N.yval, and every node P under
N.rlink has the property that P.yval ≧ N.yval.

Where xval and yval denote the coordinates of
x and y, respectively; and llink and rlink are the
pointers to the left child node and right child node,

4

respectively. For instance, a two-dimensional
space consists of some data points as shown in
Figure 5 Such that we can create a 2-d tree for
these data points as shown in Figure 6, and the
space is partitioned as in Figure 5.

Figure 5. 2-d space with data points

Figure 6. An example of 2-d tree

 2. 5. R-tree

The R-tree was proposed by Antonin Guttman
in 1984 [8]. R-tree is a tree data structure used for
spatial access methods. It groups nearby objects
and represents them with their minimum
bounding d-dimensional rectangle in the next
higher level of the tree. Each node of the R-tree
corresponds to the minimum bounding d-
dimensional rectangle that bounds its children.
Since all objects lie within this bounding
rectangle, a query that does not intersect the
bounding rectangle can also not intersect any of
the contained objects. In another words, R-tree
uses the bounding boxes to decide whether or not
to search inside a sub-tree. At the leaf level, each
rectangle describes a single object; at higher
levels the aggregation of an increasing number of
objects. R-tree is a balanced search tree which
organizes the data in pages and is designed for
storage on disk.

In an R-tree for two-dimensional space, it has
an associated order k and each non-leaf node
contains a set of at most k rectangles and at least
k/2 rectangles. For example, there are three
rectangles regions containing nine objects as
shown in Figure 7. An R-tree for this 2-d space
can be created as in Figure 8.

Figure 7. Rectangles for 2-d space

Figure 8. R-tree for 2-d space

3. HASH BASED INDICES

3.1 Hash Functions
 There were researchers focused on hash index
such as Aho et al. in [2], Lloyd in [13], Moran in
[15], and Ramamohanarao et al. in [17]. Multi
Attribute Hash (MAH) indexing has been used in
preference to indexing schemes such as B-trees
because these schemes are primary key indexing
schemes and do not perform well when multiple
non-primary keys are required in an operation.
 Hashing is used to locate and retrieve items in a
database because it really does the work in a
faster manner and likes to find the item using the
shorter hashed key than to find it using the
original value.

A hash table [19] is a data structure that
associates keys with values. The basic operation
supports to efficiently find the corresponding
value. It is done by transforming the key using
the hash function into a hash, a number that is
used as an index in an array to locate the desired
location (bucket) where the values should be.

5

3.2 Traditional Iterative Hash Structure
The traditional one-way hash functions [12]

have a common iterative structure as Figure 9.

Figure 9. Traditional iterative hash structure

 The input message was divided into N blocks
(M0, M1, …, MN-1) with b bits in each block, and
the last block must be padded while the length
was less than b. A compress function R was
employed in each iterative process. There are two
inputs in the function R, one of which is the
message block Mi-1 with b bits length, and
the other is the output of the last iteration CVi-

1 with n bits length. For the first block, CV0
 is equal to a fixed initial value IV, which was

named as Initial Vector with n bits length. The
hash value of message M is defined as the output
of the last iteration. The algorithm can be
described as :

N

iii

CVMH
NiMCVRCV

IVCV

=
≤≤=

=

−−

)(
1),,(11

0

3.3 Xiaos' Parallel Hash Structure
 Xiaos have proposed an algorithm for parallel
keyed hash [12][22] construction, whose structure
can ensure the uniform sensitivity of hash value
to the message. The mechanism of both
changeable-parameter and self-synchronization is
utilized to achieve all the performance
requirements of hash function. The simplified
algorithm structure is shown in Figure 10.

Figure 10. parallel keyed hash construction

 The hash function is used to transform the
multi-attribute index into the table index (the
hash) of an array element (k-d tree or R-tree)
where the corresponding value is to be sought.

Ideally, the hash function should map each
possible key to a unique slot index.

3.4 Multi-attribute Hash Indexes

Multi-attribute hash indexes were discussed
in Advanced Database Systems by Keamey [10].
The Figure 11 presents the method of partitioning
a multi-attribute index [10]. The space in a multi-
attribute index should be partitioned into the
fewest blocks required to store the key values. In
the Figure 11, there are two blocks. Each block
contains two record pointers. Figure 12 shows a
grid file with two attributes and three components
in grid file. In the first component, there are an
array of key values and pointers for each attribute
(1&2). The values of each attribute are stored in
an array (directory in an extendible hashing index)
together with a pointer. The pointer points to a
row or column in the grid. In the second
component, the first multi-attribute index in the
array (1) points to row 0 in the grid. However, a
grid file may have any number of attributes. Each
additional attribute requires an additional array
and a new dimension for the grid. A grid of
pointers to disc blocks is stored. Each position in
the grid corresponds to one combination of
attribute values. More than one position in the
grid may point to the same disc block.

Figure 11. Partitioning a multi-attribute index [10]

Figure 12. Grid file [10]

6

3.5 R-tree Hash
 In 2010, Guobin Li and Jine Tang [11]
proposed an HR-tree index based on hash address.
The traditional hash address sorting algorithm
does not have to compare the keywords and move
elements. Hash function is a mapping from a set
of keywords to an address set; hash (key) is the
image of the record whose keyword is the key in
the address records. In Figure 13, it shows HR-
tree index structure of the region in the high
dimensional space database which needs to
transform high dimensional space address into
one-dimensional address, divide the spatial query
region and form MBR (minimal bounding
rectangle). The keyword of hash function is the
upper-left and lower-right coordinates of MBR.
The image of the keyword in the address set is the
center of MBR. To decide the center of the MBR,
it calculates the center of the outer MBR first
then estimates the center of the internal MBR
contained.

Figure 13. HR-tree index structure of the region

4. PROPOSED INDEX STRUCTURE

4.1 Hash-Based Multi-Attribute Indexing
The structure of our hash-based multi-

attribute index for databases in the cloud platform
consists of a hash table in master node as the
global index and a tree-based index in each slave
node as the local index. The hash table for global
index only indicates the data allocated in which
slave node. In addition, the tree indexes in local
slave nodes can help to search data efficiently.
The dimensions of hash table are decided by the
number of attributes of a table indexed. The
Figure 14 represents a hash-based 2-attribute
index structure in which a two dimensional hash
table is created in master node for global index
and a 2-d tree, such as R-tree or k-d tree, is also
created in each slave node for local index. In this

index structure, the number of grids in the hash
table is equal to or greater than the number of
slave nodes. The numbers labeled in the grids of
the hash table denotes that the data in the
designated grid is allocated at corresponding
slave node. Therefore, when a query is issued, the
query data is hashed by hash function to
determine the belonged grid in global hash table
then searches in the slave node indicated by the
grid. Comparing to the existing global tree index,
our approach maintains a hash table as index can
save searching time in the global index.

A 3-attribute index is shown in the Figure 15,
which consists of a 3-d hash table in master node
and a 3-d tree index in each slave node. The more
attribute index can also be derived in the similar
way.

Figure 14. Hash-based 2-attribute index

Figure 15. Hash-based 3-attribute index

7

4.2 Hash Function for Hash Table
There has been numerous hash functions

proposed for distribution of data [16][19][21][22]
[24]. Most of them were used to address the
particular data distribution however they may not
benefit the hash table with multi-dimensional
distribution. Suppose that an attribute will be
partitioned into n segments for distribution, we
organize the following two considerations for
hash function design.

Consideration 1 – if most of queries specify this
attribute by range, such as age from 20 to 30,
the hash function should be designed as range
distribution. An example of the hash function,
HF_range(), is shown in Equation (1).

HF_range(x) = x / (MaxValue/n) … (1)

Where x is the value of attribute to be hashed,
MaxValue is the possible maximum value of
the attribute, and n is the number of segments
to be hashed. This is a range distribution and
suitable for range query.

Consideration 2 – if most queries specified this
attribute by a certain value, such as employee
ID is equal to 7654321, and normal
distribution usually occurs in this attribute
data, the hash function should be designed to
uniformly fragment the data. The MOD
function, which divides one numeric
expression by another numeric expression and
returns the remainder, can be one of such hash
functions and the hash function, HF_mod(), is
shown in Equation (2).

HF_mon(x) = x MOD n …(2)

Furthermore, the coordinate of a grid in
multi-dimensional hash table can be determined
by the multi-attribute hash function, MA_HF(), as
shown in Equation (3).
MA_HF(x1, x2, x3, …) = (HF1(x1), HF2(x2),

HF3(x3), …) … (3)
Where x1, x2, x3, … denote the values of attributes
to be hashed, HF1(), HF2(), HF3(), … denote the
hash functions, which are either HF_range()s or
HF_mod()s decided by consideration 1 and 2,
used to convert the attribute value xi. A record
can be hashed by Equation (3) to determine
which grid to enroll.

4.3 Best Fit Decreasing Strategy

The range distributed data may cause load
imbalanced in slave nodes due to data may

massed in some small range by the property of
normal distribution. Hash distribution is usually
used to address this problem. However, it is not
to guarantee. If data is unbalancing distributed
across the slave nodes, it will degrade the system
performance and long response time for queries
may happen. To resolve this problem, there is an
accumulator for each grid of hash table in our
hash-based multi-attribute index. The
accumulator is used to keep trace the number of
records enrolled in this grid and allocated to
corresponding slave node. Therefore, the Best Fit
Decreasing Strategy [9] can be applied to balance
the data distribution in slave nodes.

In our proposed scheme, a database can be
organized as a set of data grids in which data is
enrolled. Such that the Best Fit Decreasing
Strategy balancing the data distribution in slave
nodes is achieved by assigning data grids from
overflow local slave nodes to underflow nodes. In
this strategy, the grids of hash table are first
sorted into decreasing order according to the
number of records inscribed in accumulator. Then,
in assignment iteration, the grid which currently
has the largest value (number of records) in
accumulator is assigned to the slave node which
currently has the smallest number of records
assigned. This process is repeated until all the
records enrolled in grids have been allocated.

We would like to note that the grids in our
hash table are only used to indicate the slave
nodes where data allocated such that the data
structure of each grid consists of an accumulator
and a pointer (to the slave node) only. The size
of our hash table is fixed and won’t grow when
the size of database grows up.

5. PERFORMANCE STUDY

5.1 Experimental Methods
For simplify, we only randomly generated

two dimensional coordinates and three
dimensional coordinates as two-attribute and
three-attribute records for creating two
dimensional and three dimensional index
structures. We build our proposed multi-attribute
index structure by using hash table in master node
as global index combine with three tree indexes,
which are R-tree, k-d tree and quad-tree, in slave
nodes as local indices. They will be abbreviated
to “Hash table + R-tree”, “Hash table + k-d tree”,
and “Hash table + quad-tree” in remaining of this
paper.

8

We compare our approaches to the existing
index structures of R-tree combining R-tree, R-
tree combining k-d tree, and quad-tree combining
quad-tree as global indices and local indices in
the efficiency of memory cost and search time
cost. These index structure are also abbreviated to
“R-tree + R-tree”, “R-tree + k-d tree”, and “quad-
tree + quad-tree”. We note that both 2D R-tree
and 3D R-tree have an associated order (or degree)
four. To investigate the scalabilities of multi-
attribute indices, the total numbers of record
generated in our databases is varied from one
millions to five millions records. We assume that
the indexed attributes are normal distribution in
our database such that the Equations (2) and (3)
are used for created our proposed indices. Our
experimentation consists of three parts -- memory
cost, time cost for hit data search, and time cost
for no hit data search.
 Our experimental infrastructure includes one
master node and twenty slave nodes to simulate
Cloud computing platforms. Each computer had a
Q8400 2.66G (1333MHZ) CPU with 4M: L2
cache, 2GB*1(DDR3 1066) 4*DIMM memory,
and 500 GB disk. Machines ran on Windows XP
Professional OS.

5.2 Memory Cost
In this section, the memories consumed by

every variety of multi-attribute indices were
investigated. The experimental results for two-
attribute indices and three-attribute indices are
shown in Figure 16 and Figure 17, respectively.
From the two figures, our proposed hash table +
k-d tree consumes the least memory among six
index structures. The hash table + quad-trees also
performs well and is just little worse than hash
table + k-d trees. The main reason is that the
memory consumed by a hash table as a global
index is a constant size and independent to the
size of database. Therefore, only the tree indices
in slave nodes are affected by the database sizes
in memory consuming for our proposed hash-
based multi-attribute index structures.

The index structure R-tree + R-tree performs
the worst for memory consuming. This may be
due to that R-tree always stores data in leaf nodes
and needs to create a number of non-leaf nodes
for the minimum bounding rectangles. R-tree also
needs to store more coordinates for bounding
rectangles and needs more branch links to the
child nodes. In contrast, the k-d tree likes the
binary search tree in which data is stored in either
leaf nodes or non-leaf nodes and k-d tree has only

two branch links to the child nodes. In addition,
k-d tree, in 2-dimensional or 3-dimensional,
needs only one coordinate for each node and does
not need to store the boundary for rectangle
boxing. Thus it can explains that one of our
proposed hash-based indices, hash table
combining R-tree, does not perform well in this
study. The Hash table + k-d trees comparing to R-
tree + R-tree can save memory space up to
69.29% and 70.73% in 2-attribute and 3-attribute
respectively, where there are five million records
in indexes.

Figure 16. Memory cost for two-attribute indices

Figure 17. Memory cost for three-attribute

indices

5.3 Time Cost for Hit Data Search

In this section, we evaluate the query search
efficiency for all six of multi-attribute indices.
We randomly pick 50,000 records from databases
to be query examples then search in the indices to

9

insure the hit data search. We accumulated the
time needed for all query searches. The
experimental results are presented in Figure 18
and Figure 19. The Figure 18, demonstrating all
the query data searching hit in two-attribute
indices, shows that our three hash-based indices
outperform the other three index approaches.
Figure 19, which representing hit searching in
three-attribute indices, also shows the similar
behavior as in Figure 18 that hash-based indices
outperform the other three. That is because the
search in hash-based index is straightforward by
calculating in hash function and finding the
pointer in hash table then linked to the slave node
for consequent searching in local data. Therefore,
unlike searching in tree indices in which more
comparisons have to perform in each travelled
node, the search time needed in the hash table of
global index is very short. The hash table + k-d
tree is the most efficient index in this study. That
is due to k-d tree can supports the most efficient
searching comparing to the R-tree and quad-tree.

The R-tree + R-tree performs worst again.
The reason is that R-tree only stores data in leaf
nodes such that the queries should always search
to the leaf node. Although R-tree has the
advantage that it uses the minimum bounding
boxes to decide whether or not to search inside a
sub-tree or slave node, this advantage cannot
benefit R-tree in this study due to the query
searches were all hit. The Hash table + k-d trees
comparing to R-tree + R-tree can save time cost
up to 90.10% and 97.84% hit data searching in 2-
attribute and 3-attribute respectively, where there
are five million records in indexes.

Figure 18. Hit data searching in two-attribute

indices

Figure 19. Hit data searching in three-attribute

indices

5.4 Time Cost for No Hit Data Search
After we study the time consuming for hit

data search, we would like to examine the time
cost for no hit data search in this section. As
discussed in last section, R-tree has the advantage
for using the minimum bounding boxes to decide
whether or not to search inside a sub-tree or slave
node. If a query does not intersect the bounding
rectangle, it will be filtered out quickly and not
necessary searching down to the leaf nodes or
slave nodes. Therefore, no hit data searching
might benefit R-tree. In this experiment, we
designed and randomly generated 50,000 query
samples which cannot be found in our database to
insure searching with no hit. These queries are
also searched in four kinds of multi-dimensional
index which represent two-attribute indices and
three-attribute indices. Again, we accumulated
the time needed for all query searches. Our
experimental results are demonstrated in Figure
20 and Figure 21. Obviously, these two figures
have the similar behaviors with that of the Figure
18 and Figure 19. Our proposed hash-based
multi-attribute indices are more efficient than the
other three tree-based indices again. The hash
table + k-d tree is still the most efficient index for
applying in either 2-attribute or 3-attribute data
searching in this study. The hash table + quad-
tree is also performs well.

Furthermore, although the curves of R-tree in
Figure 20 and Figure 21. are slight lower than in
Figure 18 and Figure 19, respectively, the
advantage of filtering out no hit query for R-tree
is not obvious. In the report of [14] by Michela
and et al. have proved that R-tree is based on
minimum bounding rectangles and the three

10

dimensional extension consists of minimum
bounding boxes and techniques are often low in
efficiency, as sibling nodes might overlap.

The Hash table + k-d trees comparing to R-
tree + R-tree can save time cost up to 90.40% and
97.97% no hit data searching in 2-attribute and 3-
attribute respectively, where there are five million
records in indexes.

Figure 20. No hit data searching in two-attribute

indices

Figure 21. No hit data searching in three-attribute

indices

6. CONCLUSIONS

There were few research reports proposed
multi-attribute indexing schemes for Cloud
platform to manage the huge and variety data to
address the complex queries efficiently. All these
existing indexing schemes for Cloud platform
construct tree-based indices. In this research, we

investigated the load balancing issue and also
developed the hash-based multi-attribute index
structures for Cloud platform. Our experimental
results demonstrate that our proposed indices
outperform the existing multi-attribute index
schemes. Furthermore, among of our proposed
indices the hash table in master node as the global
index combining with k-d tree indexes in slave
nodes for local indices is the most efficient
structure in both memory consuming and
supporting query search.

References
[1] M.K. Aguilera, W. Golab and M.A. Shah,

“A Practical Scalable Distributed B-Tree,” in
Proc. of the VLDB Endowment, Vol. 1, Issue
1, August 2008.

[2] A. V. Aho and J. D. Ullman, “Optimal
Partial-match Retrieval When Field are
Independently Specified,” in Proc. of the
ACm Transaction on Database Systems, Vol.
4, pp. 168-179, June 1979.

[3] J.L. Bentley, “Multidimensional binary
search trees used for associative searching”,
in Communications of the ACM , Vol. 18,
Issue 9, pp. 509-517, September 1975.

[4] L. Ding, B. Qiao, G. Wang, and C. Chen,
“An Efficient Quad-Tree Based Index
Structure for Cloud Data Management,” in
proc. of the 12th international conference on
Web-age information management, pp. 238-
250, 2011.

[5] D. Eppstein, M. T. Goodrich and Jonathan Z.
Sun, “The Skip Quad tree: A Simple
Dynamic Data Structure for
Multidimensional Data,” in Proceedings of
the 21st Symposium on Computational
Geometry (SGC), pp. 296-305, 2005.

[6] H. Garcia-Molina, J. D. Ullman, and J.
Widon, Database System Implementation,
Prentice Hall, Inc., Upper Saddle River, NJ,
USA, 1999.

[7] C. Gong, J. Liu, Q. Zhang, H. Chen and Z.
Gong, “The characteristics of Cloud
computing,” in proc. of the 39th
International Conference on Parallel
Processing Workshops (ICPPW), pp.275-
279, 2010.

[8] A. Guttman, “R-trees a dynamic index
structure for spatial searching,” in proc. of
the ACM SIGMOD, June 1984.

[9] A. Henrich., H. W. Six, and P. Widmayer,
“The LSD tree: Spatial access to
multidimensional point and non-point
objects,” in proc. Of the 17th International

11

Conference on Very Large Data Bases, pp.
525-535, September, 1991.

[10] S. M. Kearney, “Advanced Database
Systems- Multi-Attribute Indexing,”
BBIT4/SEM4 Advanced Database Systems.

[11] G.b. Li and J. Tang, “A new HR-tree index
based on hash address,” in IEEE Signal
Processing Systems (ICSPS), 2nd
International, Vol. 3, Issue 1, pp. 35-38,
July 2010.

[12] P. y. Li; Y. x. Sui and H. j. Yang, “The
parallel computation in one-way hash
function designing,” in IEEE Computer,
Mechatronics, Control and Electronic
Engineering (CMCE) International
Conference, vol. 1, pp. 189 - 192, October
2010.

[13] J. W. Lioyd, “Optimal Partial-match
Retrieval,” in BIT, vol. 20, pp. 406- 413,
1980.

[14] B. Michela, B. schoen, D.F. Laefer and M.
Sean “Storage, manipulation, and
visualization of LiDAR data,” in proc. of
the 3rd ISPRS International Workshop on
3D Virtual Reconstruction and Visualization
of Complex Architectures (3D-ARCH),
Trento, Italy, 25-28 February 2009.

[15] S. Moran, “On the Complexity of Designing
Optimal Partial-match Retrieval Systems,”
in ACM Transaction on Database Systems,
vol. 8, 543-551, December, 1983.

[16] B. Mozafari and N.H. Savoji, "A new
collision resistant hash function based on
optimum dimensionality reduction using
Walsh-Hadamard transform," the 9th
International Conference on Information
Technology (ICIT '06), pp. 149-154, Dec.
18-21, 2006.

[17] .K. Ramamohanarao， J. Shepherd and R.
Sacks-Davis, “Multi- attribute Hashing with
Multiple File Copies for High Performance
Partial-match Retrieval,” in proc. Of BIT,
vol. 30, pp. 404-423, 1990.

[18] S. Ratnasamy, P. Francis, M. Handley, R.
Karp, and S. Shenker, “A scalable content-
addressable network,” in proc. of
conference of the ACM Special Interest
Group on Data Communication
(SIGCOMM), San Diego, CA, USA, 2001.

[19] M. Singh and D. Garg, “Choosing Best
Hashing Strategies and Hash Functions,” in
IEEE International Advance Computing
Conference, pp. 50 - 55, March 6-7, 2009.

[20] J. Wang, S. Wu, H. Gao, J. Z. Li and B. C.
Ooi, “Indexing Multi- dimensional Data in a

Cloud system”, in proc. of the international
conference on Management of data
(SIGMOD’10), pp.591-602, Indianapolis,
Indiana, June 2010

[21] Y. Xia, S. Chen, and V. Korgaonkar, "Load
Balancing with Multiple Hash Functions in
Peer-to-Peer Networks," the 12th
International Conference on Parallel and
Distributed Systems (ICPADS'06),
Minneapolis, MN, July 12-15, 2006.

[22] D. xiao, XF. Liao, and SJ. Deng, “Parallel
keyed hash function construction based on
chaotic maps,” Physics Letters A, vol. 372,
pp. 4682-4688, 2008.

[23] S. Zhang, S. Zhang, X. Chen and S. Wu,
“Analysis and research of Cloud computing
system instance,” in proc. of the second
international conference on Future
Networks, pp. 88-92, Sanya, Hainan,
January 22-24, 2010.

[24] D. Zhang, D. Agrawal, G. Chen, and A.K.H.
Tung, "HashFile: An efficient index
structure for multimedia data," the 2011
IEEE 27th International Conference on
Data Engineering (ICDE2011), pp. 1103-
1114, April 11-16, 2011.

[25] X. Zhang, J. Ai, Z. Y. Wang, J. H. Lu and X.
F. Meng, “An Efficient Multi-Dimensional
Index for Cloud Data Management,” in proc.
of the first international workshop on Cloud
data management, pp. 17-24, Hong Kong,
November 2009.

	Figure 1. Framework of EMINC [25]
	Figure 2. Data service of RT-CAN index [20]
	Figure 3. Nodes in a point Quad tree
	Figure 4. Framework of Quad tree based multi-attribute index [4]
	Figure 5. 2-d space with data points
	Figure 6. An example of 2-d tree
	Figure 7. Rectangles for 2-d space
	Figure 8. R-tree for 2-d space
	Figure 9. Traditional iterative hash structure
	Figure 10. parallel keyed hash construction
	Figure 11. Partitioning a multi-attribute index [10]
	Figure 12. Grid file [10]
	Figure 13. HR-tree index structure of the region
	Figure 14. Hash-based 2-attribute index
	Figure 15. Hash-based 3-attribute index
	Figure 16. Memory cost for two-attribute indices
	Figure 17. Memory cost for three-attribute indices
	Figure 18. Hit data searching in two-attribute indices
	Figure 20. No hit data searching in two-attribute indices
	Figure 21. No hit data searching in three-attribute indices
	References

