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Abstract—In this paper, we propose a complex-
valued symmetry-constrained maximum-a-
posterior probability (SC-MAP) algorithm and 
a real-valued SC-MAP (RSC-MAP) algorithm 
for concurrent adaptive filter (CAF) applied to 
beamforming. We first contribute to deriving a 
closed-form optimal weight expression for 
blind MAP algorithm. A conjugate symmetric 
property associated with optimal blind MAP 
weights is further acquired. Then, we use the 
conjugate symmetric constraint to guide the 
proposed SC-MAP and RSC-MAP algorithms 
to follow the optimal blind MAP expression 
form during adapting procedure. In the 
simulations, we show that the proposed SC-
MAP and RSC-MAP algorithms have better 
performance than the classic ones. Compared 
with SC-MAP, the RSC-MAP with less 
computational complexity has the same bit-
error rate performance. 
 
Keywords—Maximum-a-posteriori probability 
estimation (MAP), constant modulus algorithm 
(CMA), beamforming, filtering. 

1. INTRODUCTION 

Adaptive filter applied to beamformer can 
receive the desired signals while suppressing the 
interfering ones. There have been various 
applications to antenna array and communications 
[1-8]. The reference-based algorithms [1-7] can 
effectively adapt the weights of filter, but the 
required reference data would reduce the system 
throughput. The blind algorithms [1-2, 8-18], like 
constant modulus algorithm (CMA), have higher 
throughput by avoiding the use of reference data. 
However, decision ambiguity often occurs in blind 
algorithms.  

Recently, experts [9-17] developed a concurrent 
adaptive filter (CAF), which can concurrently 
employ two kinds of blind algorithms and acquire 
better performance than classic adaptive filters. 
The concurrent CMA and decision directed 
algorithm (CMA+DD) [9-11] was first studied for 
CAF. The CMA+DD with a complexity that is 
more than twice of CMA can alleviate the decision 
ambiguity. The concurrent CMA and maximum a- 
posteriori probability algorithm (CMA+MAP) was 
studied in various scenarios [12-17]. With less 
complexity, CMA+MAP has a similar steady-state 
performance to CMA+DD. However, a slow-
converging problem still makes blind algorithms 
impractical in many real-time applications. 

The MAP method actually has been employed in 
both reference-based [4,5] and blind algorithms 
[12-18]. None of these works discusses a closed-
form solution for MAP. In this paper, a derived 
conjugate symmetry of optimal MAP expression is 
given. To the best of our knowledge, no past 
research papers have investigated on a symmetry-
constrained for the blind MAP algorithm. Based 
on this conjugate symmetry property of blind 
MAP, we propose a concurrent CMA and 
complex-valued symmetry-constrained MAP 
algorithm (CMA+SC-MAP). Subsequently, we 
further propose a concurrent CMA and real-valued 
SC-MAP algorithm (CMA+RSC-MAP) based on 
two real-valued update equations to independently 
update the filter weights. Under this manner, 
CMA+RSC-MAP can obtain less computational 
complexity than CMA+SC-MAP. We will show in 
simulations that CMA+SC-MAP and CMA+RSC-
MAP are superior to the classic algorithms in 
terms of bit-error rate (BER) and signal 
constellation.  

 



2. SYSTEM MODEL 

The model studied is a uniform linear array with 
M sensors. The adjacent space da between sensors 
is less than half of signal wavelength aλ  to avoid 
aliasing. Suppose there are L narrowband and 
uncorrelated signals impinging on the array with 
different directions of angles (DOA) 10 ,..., −Lθθ , 
respectively. The received array signals at the nth 
snapshot are expressed as [6-8] 

 )()()](),...,([)( 10 nnnxnxn T
M nsAx +⋅=≡ −

, (1) 

Where s(n) ≡ [s0 (n),...,sL−1(n)]
T  are source signals, 

n(n) is the white noise vector with E[n(n)nH (n)]  
= 2σ n

2IM , A ≡ [a(ψ0 ),a(ψ1),...,a(ψL−1)] is a mixing 

matrix and a(ψl ) ≡ [1,e
− jψl ,...,e− j (M−1)ψl ]T  is the 

array steering vector with ψl = 2πda sin(θl ) / λa[  
1−8] . By using a set of filter weights w ≡  
[w0 ,...,wM−1]

T , the filter output is y(n) =wH x(n) .  
 

3. THE PROPOSED BLIND 
ALGORITHM 

3.1.  Optimal Weight Expression of Blind 
MAP Algorithm 

A closed-form optimal weight expression for 
blind MAP algorithm is derived here. Without loss 
of generality, we assume that the desired signal 
sd (n)  is related to the first element of s(n) . When 
the weight vector w has been optimally chosen in 
the steady state, the filter output can be expressed 
as  
 )()()( nvnsny d +≈ , (2) 
where )(nsd  is chosen from one of the elements in 
the N2-QAM symbol set: 
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Where N  is the bit number of each symbol, F  is 
normalized factor to make 1]|[| 2 =dsE  and )(nv  
is approximate Gaussian distribution with zero 
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We derive the optimal weight expression of the 
blind MAP algorithm by maximizing the mean 
value of p̂(w, y(n)) : 

))](,(ˆ[)(max nypEJo ww = . (5) 
To find the maximum value, we use the gradient 
descent method, i.e., ∂Jo (w) / ∂w

* = 0 , to obtain 
the expression: 
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As the weights converge to the optimal solution in 
steady state, the output )(ny  should be 
geometrically near )(nsd , and far away from the 

locations associated with siq ≠ sd (n) . If ρ  is 

chosen properly, the values of the exponential 
functions related to )(nss diq ≠  in (6) would be 

very small. Thus the equation for the optimal blind 
MAP expression can be simplified as  
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where )(ˆ nsd  is the blind MAP estimate of sd (n) . 

Due to )(ny  geometrically located near sd (n)  in 
steady-state as formulated in (2), )(ˆ nsd  should be 

also uncorrelated to s1(n),...,sL−1 . Besides, the 
system model (1) can be rewritten as  

 )()()()( nnsn ii nax +=∑ ψ . (8) 

Accordingly, the optimal weight expression for 
blind MAP algorithm can be expressed as 

 )( 0
1 ψaRw −= c , (9) 

where )]()([ nnE HxxR =  and )](ˆ)([ 0 nsnsEc d
∗≡ .  

The derived optimal blind MAP expression (9) 
is very similar to the well-known reference-based 
sample matrix inversion (SMI) one [2], which is 
seen as an optimal solution of linear adaptive filter. 
Unfortunately, we cannot directly use the weight 
expression (9) to obtain the optimal blind MAP 
solution in reality, since c depends on ŝd (n) , 
which is a function of w. However, we can extract 
a useful conjugate symmetric property from the 
optimal expression (9) to further design the 
proposed blind algorithm. This conjugate 
symmetric property is as follows: 

 ∗= Jww MCje φ , (10) 



whereφMC = 2φc − (M −1)ψ0 , φc  is the phase of c 
and the matrix J  is defined as 
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Proof. Note that IJJ = , and R  is a centro-
Hermitian matrix. We have JJRR ∗=  and 

JRJR ∗−− = )( 11 . The steering vector has the 
property of )()( 0

)1(
0

0 ψψ ψ ∗−−= Jaa Mje . The property 
of the optimal blind MAP expression is acquired 
as follows: 
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Next, we will show that this property provides a 
powerful constraint to design the proposed blind 
SC-MAP algorithm. 

 
3.2.  Concurrent CMA and SC-MAP 

algorithm 

The blind CMA is known to be capable of 
opening an ‘initially closed eye’ for CAF [9-17]. 
However, the CAFs, such as CMA+DD and 
CMA+MAP, still require a large number of 
snapshots to achieve a satisfactory performance in 
many applications. We propose to add the optimal 
blind MAP property (10) into the proposed 
CMA+SC-MAP algorithm.  

The weight vector of CMA+SC-MAP contains 
two parts:  

 mc www += , (13) 
where filter weights cw  and mw  are, respectively, 
for the CMA algorithm and the proposed SC-MAP 
algorithm. Based on the CMA cost rule with a 
constant )|)((|/)|)((| 24 nsEnsER dd≡ : 
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the weights cw  is updated as 

)()()|)(|()()1( 2 nnynyRnn ccc xww ∗−+=+ µ , (15) 
where cµ  is the stepsize. The weights wm by 
contrast are updated based on the proposed SC-
MAP. Because φMC  in (10) is unknown to a blind 
algorithm, we decompose mw  as msmwwm

∗=α  to 

avoid the direct operation on φMC , where 
2/MCj

m e φα −=  and m
j

ms
MCe ww 2/φ−= . Note that 

1|| =mα . Based on (10), it can be easily proved 
that the created weights msw  also satisfy the 
conjugate symmetry: 

 ∗= msms Jww .  (16) 
To derive the adaptive blind SC-MAP algorithm, 
the MAP rule (5) associated with the complex-
valued filter output y(n)  is equivalently modified 
as an instantaneous log rule )(wmJ , and the 
symmetric constraint (16) is added to guide the 
weights mw  obeying the optimal blind MAP 
property:  

 [ ]))(,(ˆlog),(max nypJ mmsm ww ρα =  (17) 
subject to ∗= msms Jww . 

To transform the constrained MAP rule into an 
unconstrained maximum problem (17) is modified 
as the following cost rule: 
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where the undetermined multiplier )(nλ  is a real 

number due to ||wms (n)− Jwms
* (n) ||2  being a real 

value. We take the gradient of (18) with respect to 
wms
*  and αm , respectively, as 
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and  
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The weight vector of SC-MAP is updated in the 
positive direction of the gradient (19), scaled by 
the stepsizeµm : 
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 (22) 
Because wms (n+1)  is constrained to obey the 
property of the optimal blind MAP expression, we 
substitute (22) into (16):  
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where  
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By substituting (23) into (22), we get the final 
updated wms: 
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We also update mα  in the positive direction of the 

gradient (20), scaled by the stepsize µα , and make 
sure it is normalized: 
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Then we get )1()1()1( ++=+ ∗ nnn msm wwm α  
containing the property of the optimal blind MAP 
weight expression.  

By adding the constraint to the MAP cost rule, 
the algorithm structure of the proposed CMA+SC-
MAP is very different from that of the traditional 
ones and gives an alternate choice for further 
designs. The choice of ρ  should be small enough 
to prevent breaking the assumption of (7). Because 
αm  influences the phase of wm  only, µα is not 
sensitive to the performance. 
 
3.3.  Concurrent CMA and RSC-MAP 

algorithm 

Although CMA+SC-MAP algorithm would 
acquire bit-error rate (BER) performance close to 
optimal solutions in a few adaptations, a low-
complexity version of CMA+SC-MAP is 
preferred. By splitting the complex-valued 
derivation in Section 3.2 into two independent 
real-valued derivations, a real-valued SC-MAP 
(RSC-MAP) algorithm is proposed in this sub-
section.  

In the following, the {·}R and {·}I donate the 
real part and the imaginary part of the complex 
number vector. The SC-MAP weights wms satisfy 
the conjugate symmetry ∗= msms Jww , but RSC-
MAP algorithm split this single-symmetry into 
two real-valued symmetries: 
wmsR = JwmsR ,   (27) 

and 
wmsI = −JwmsI , (28) 

Similar to CMA+SC-MAP, the CMA+RSC-MAP 
weight vector contains two pairs: 
w =wc +wm
= (w cR+w mR )+ j(wcI +wmI )

. (29) 

We also get the filter output as 
y = (wR

T xR +wI
T xI )+ j(wR

T xI −wI
T xR ) , (30) 

Differing from cost rule (17) associated complex-
valued yR , we consider the MAP cost rules 

associated with real-valued yR (n)  and yI (n)  and 
constrain them to follow the real-valued 
symmetries (27-28), respectively: 
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The constrained cost rules (31-32) are then 
transformed into unconstrained forms: 

QR = JmR (wms ,am )+
λR (n)

||wmsR (n)− JwmsR (n) ||
2

, (33) 

QI = JmI (wms ,am )+
λI (n)

||wmsI (n)− JwmsI (n) ||
2

. (34) 
We take the gradient of (33) with respect to 
wmsR andαmR , respectively, as 

∇wmsR
QR = ΔmR (n)(αmR (n)xR (n)−αmI (n)xI (n))

−
4λR (n)(wmsR (n)− JwmsR (n))
||wmsR (n)− JwmsR (n) ||

4 , 

   (35) 
and 
∇αmsR

QR = ΔmR (n) wmsR
T (n)xR (n)+wmsI

T (n)xI (n)"
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% , 

   (36)
 where 

 

ΔmR (n) ≡
exp(

(yR (n)− si )
2

2ρi
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Similarly, we take the gradient of (34) with 
respect to wmsI  and αmI , respectively, as 

 

∇wmsI
QI = ΔmI (n)(αmI (n)xI (n)−αmR (n)xR (n))

−
4λI (n)(wmsI (n)+ JwmsI (n))
||wmsI (n)+ JwmsI (n) ||

4 ,  

   (38) 
and 
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   (40) 
Then the updating of the weight vector wms  is also 
separated into the real part and the imaginary part 
as follows: 
wmsR (n+1) =wmsR (n)

+µmΔmR (n)(αmR (n)xR (n)−αmI (n)xI (n))

−µm
4λR (n)(wmsR (n)− JwmsR (n))
||wmsR (n)− JwmsR (n) ||

2

,

 

    (41) 
wmsI (n+1) =wmsI (n)

+µmΔmI (n)(αmI (n)xI (n)−αmR (n)xR (n))

−µm
4λI (n)(wmsI (n)+ JwmsI (n))
||wmsI (n)+ JwmsI (n) ||

2
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   (42) 
We know that wmsR (n+1)  and wmsI (n+1)  are 
constrained into the two real-valued symmetries, so we can drive the following equations: 

µm
4λR (n)(wmsR (n)− JwmsR (n))
||wmsR (n)− JwmsR (n) ||

2
=
µmΔmR (n)

2
(vR + JvR (n)) , 

  (43) 
where vR (n) = (αmR (n)xR (n)−αmI (n)xI (n)) , 
and 

µm
4λI (n)(wmsI (n)+ JwmsI (n))
||wmsI (n)+ JwmsI (n) ||

2
=
µmΔmI (n)

2
(vI − JvI (n)) , 

   (44) 
where vI (n) = (αmI (n)xI (n)−αmR (n)xR (n)) . Finally, 

we can get the wmsR and wmsI by substituting (43) 
into (41) and (44) into (42): 

 wmsR (n+1) =wmsR (n)+
µmΔmR (n)

2
(vR + JvR (n)) ,  

   (45) 
and  

 wmsI (n+1) =wmsI (n)+
µmΔmI (n)

2
(vI − JvI (n)) .   

  (46) 
We also update αmR and αmI in the gradient of 

(36) and (39) with the same stepsize µα and 
normalized it: 

α̂mR (n+1) =αmR (n)+µαΔmR (n)Λ(n)
α̂mI (n+1) =αmI (n)+µαΔmI (n)Λ(n)

!
"
#

$#
,  (47) 

αm(n+1) =
(α̂mR (n+1)+ jα̂mI (n+1))
| α̂mR (n+1)+ jα̂mI (n+1) |

,  (48) 

where Λ(n) =wmR
T (n)xR (n)+wmI

T (n)xI (n) . The 
blind RSC-MAP weight vector finally is expressed 
as wm(n+1) =αm(n+1)

*(wmR (n+1)+ j(wmI (n+1)) . 
The RSC-MAP algorithm has guided the 

complex-valued-based cost rule used for SC-MAP 
into two real-valued-based cost rules. We will 
show in simulations that the CMA+RSC-MAP 
algorithm would obtain the same performance as 
the CMA+SC-MAP with less complexity. 

 
TABLE 1 

STEPSIZES WITH 4-QAM 

Stepsize CMA+
DD 

CMA+
MAP 

CMA+
SC-
MAP 

CMA+
RSC-
MAP 

cµ  0.002 0.0009 0.002 0.004 
mµ  0.003 0.005 0.009 0.00001 

 

 

Fig. 1 BER performance at different SNRs after 
600 snapshots for adapting. 



 

 

Fig. 2 Constellation of filter outputs after 600 
snapshots for adapting. 

 

4. SIMULATION RESULTS 

4.1 Performance Analyses 
Simulations are executed to show the 

performance and analyses of the proposed 
algorithm. For all simulations, we have assumed 
that the linear array contains eight sensors with 

2/aad λ= . The blind CMA+DD [11], blind 
CMA+MAP [12] blind CMA+SC-MAP and 
optimal reference-based SMI solution with 600 
reference data [2] are also simulated for purpose 
of comparisons.  

We set four source signals arriving from the 
DOAs °−= 100θ , °−= 151θ , °−= 302θ  and 

°= 203θ , respectively, with the first signal being 
the desired one. All signals have the same power 
and are modulated by 4-QAM. The stepsizes µα  

and µm  for various algorithms are given in Table 

1. The stepsize µα  is set as 0.02 and 0.005 for 
CMA+SC-MAP and CMA+RSC-MAP, 
respectively. The variance ρ  is set as 0.09 and 
0.15 for CMA+SC-MAP and CMA+RSC-MAP, 
respectively. With averaging 105 individual runs, 
each run involves the adapting and testing phases 
obtain the results. The number of snapshots in the 
testing phase is 103. 

Fig.1 shows BER curves of various algorithms 
after 600 snapshots for adapting. Without any 
available reference data, the blind CMA+RSC-
MAP by 600 adaptations can be the same 

performance to the CMA+SC-MAP also close to 
the optimal reference-based SMI solutions. Apart 
from low SNRs, the gap as the performance in 
high SNRs will be more noticeably.  

Fig. 2 shows constellation of filter outputs after 
600 snapshots for adapting. It can be seen that the 
classic blind algorithms have different degrees of 
phase rotation. This is the major reason for the 
occurrence of the poor BER performance. We can 
see that the signals of CMA+DD, CMA+MAP and 
CMA+SC-MAP on the constellation are still 
dispersive, but the signals of the CMA+RSC-MAP 
algorithm on the constellation are more 
centralizing to the ideal 4-QAM signals than the 
other algorithms. 

 
TABLE 2 

COMPUTATIONAL COMPLEXITY PER WEIGHT 
UPDATE 

Algorithm Multiplication Division 
CMA+DD 16M +8 N/A 
CMA+MAP 12M +5N2 +9 2 
CMA+SC-MAP 16M +5N2 +23 4 
CMA+RSC-MAP 15M +6N +16 4 

 

4.2 COMPLEXITY ANALYSES 
The computational complexity of various CAFs 

is shown in Table 2. Multiplications and divisions 
mainly affect the computational complexity, so we 
only show multiplications and divisions in the 
table. Noting that the number N in Table II is 
related to probability density functions. For 
example, N2-QAM requires N2 Gaussian clusters 
to acquire the estimate of p̂(w, y(n))  for 
CMA+MAP and the proposed CMA+SC-MAP. 
When N gets higher, the multiplication will be 
increased by square for CMA+MAP and 
CMA+SC-MAP. The proposed CMA+RSC-MAP 
algorithm using probability density functions 
defined in (31-32) only requires 3N 
multiplications for each Gaussian clusters. 
Therefore, the multiplication computation of 
CMA+RSC-MAP could be largely saved per 
weight update.  

5. CONCLUSIONS 

In this paper, the symmetric-constrained 
property has been shown to be useful to derive the 
proposed CMA+SC-MAP and CAM+RSC-MAP 
algorithms. The simulations show that the 



CAM+RSC-MAP obtain the same performance as 
the CMA+SC-MAP, and are closed to optimal 
reference-based SMI solutions. The phase error 
occurred in CMA+DD and CMA+SDD would 
lead to poor BER performance, but both 
CMA+SC-MAP and CMA+RSC-MAP do not 
have serious phase-error problems. Compared 
with the CMA+SC-MAP, the CMA+RSC-MAP 
greatly reduces the multiplication complexity from 
16M +5N2 +23 to 15M +6N +16.  
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