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Abstract— PTS method is a well-known 
method which can reduce the PAPR in OFDM 
systems. The conventional PTS techniques can 
provide good PAPR reduction performance; 
however, the search complexity of the original 
PTS method increases exponentially with the 
number of the sub-blocks. In this paper, we 
proposed two algorithms to drastically reduce 
search complexity while slightly degrade the 
PAPR reduction performance. 
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1. INTRODUCTION  

Orthogonal frequency division multiplexing 
(OFDM) is an attractive technique for achieving 
high-bit-rate wireless data communication [1-3]. 
It has attracted a lot of attentions especially in the 
field of wireless communications, and it been 
adopted as the standard transmission technique in 
the wireless LAN systems and the terrestrial 
digital broadcasting system. One of the major 
drawback of the OFDM system is the high peak-
to-average power ratio (PAPR), which may cause 
high out-of-band radiation when the OFDM 
signal passed through a radio frequency power 
amplifier. Consequently, high PAPR is one of the 
most important implementation challenges for 
OFDM system designers. 

In order to reduce the PAPR, several 
techniques have been proposed [4-7]. Among 
these methods, the partial transmit sequence (PTS) 
[5] is the most attractive scheme because of good 
PAPR reduction performance and no restrictions 
to the number of the subcarriers. PTS method 
divides the input data block into disjoint sub-
blocks and recombines them by using phase 
factors. The sub-blocks are then added to form 
the OFDM symbol for transmission. The 

objective of the PTS scheme is to select optimal 
phase factors for each sub-block set. 

PTS method significantly reduces the PAPR, 
but unfortunately, finding the optimal phase 
factors is a highly search complex problem. In 
order to reduce the search complexity, the 
selection of the phase factors is limited to a set of 
finite number of elements. The exhaustive search 
algorithm (ESA) is then employed to find the 
best phase factor. However, the search 
complexity increases exponentially with the 
number of sub-blocks. 

In order to reduce the search complexity, many 
extensions of PTS schemes have been proposed 
recently. However, for all these searching 
methods, either the PAPR reduction is 
suboptimal or the complexity is still high. For 
example, iterative flipping algorithm (IFA) has 
been proposed in [8] to reduce the PAPR with 
less computation complexity and implementation 
complexity. Using Hamming distance and 
Hamming weight to find phase factors has also 
been proposed in [9]. However, those algorithms 
are suboptimal. Therefore, we proposed two 
algorithms to reduce search complexity and those 
algorithms still have good performance. 

The remainder of paper is organized as follows. 
section 2 introduces the PAPR in OFDM systems 
and the principles of the PTS method. Our 
proposed algorithms is presented in section 3. 
The results of simulations are shown in section 4. 
Finally, the conclusion is given in section 5. 

2. PAPR AND PTS METHOD  

2.1. PAPR in OFDM Systems 

In an OFDM system, we denote 
X=[X0,X1,...,XN-1] as the input data block of length 
N. Then the complex baseband OFDM signal 
consisting of N subcarriers is given by  
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where j= -1, ∆f denotes the subcarrier spacing, 
and NT denotes the data sequence period, Xn 
denotes the modulated symbols. Then the PAPR 
of continuous-time signal x(t) is defined as the 
ratio of maximum instantaneous power and 
average power, given by 
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where E[•] denote expectation operation. We can 
also represent PAPR of discrete-time signal as 
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2.2. OFDM System with PTS to Reduce 
the PAPR 

The PTS method is introduced in this section 
and the structure of PTS is shown in Fig. 1.  

The input data X is partitioned into M disjoint 

sets, and iX%  is the i-th sub-block with length N, 

where i=1,2,...,M, i.e.: 
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Fig. 1  The diagram of PTS structure 

 
In general, for PTS scheme, the known sub-

block partitioning methods can be classified into 
three categories: adjacent partition, interleaved 
partition and pseudo-random partition. In this 
paper, we choose adjacent partition. Then, each 

iX%  passes IFFT operation. We assume that 

% { },  .i ix IFFT X i= ∀%
                    (5) 
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where θi is a phase factor and [ )0,2iθ π∈ . 

The output signal S is the combination of x%  
and B. The form of S is: 
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Assume that θ=[θ1 θ2 ... θM]T is the optimal 
phase vector for input signal. θ must satisfy: 
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where îje θ  is the optimum rotation of i-th sub-
block. 

Since [ )0,2iθ π∈ , it becomes extremely 

difficult to find the optimal phase vector. 
Typically, the phase factors are constrained to a 
finite set. For example, if we use the phase set 
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, we can only find 

suboptimal phase vector ˆ
subθ . And ˆ subθ  can be 

expresses as 
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Then, the transmitted signal is ˆ ˆT=S x B% , i.e.: 
ˆ
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In Eq. (10), it is obvious that finding a best 

phase factor set is still a complex and difficult 
problem when M is large. Therefore, we 
proposed  suboptimal search algorithms for PTS 
phase selection in the next section. 

3. PROPOSED ALGORITHM 

3.1. Observation and Definition of New 
Phase Factor 

Form Eq. (6), x%  is a M×N matrix. The i-th row 
of x%  is the i-th sub-block after passing IFFT. 

,i kx%  is the k-th sample value of the i-th sub-block 

after IFFT, i=1, 2, ..., M and k=1, 2, ..., N-1, and 
each ix%  is 1×N matrix. 

The output signal can be expressed as 
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If multiplication between each sub-block and 
phase factor is not processed. The k-th element of 
1×N output matrix is the k-th sample output. S is 
output signal without passing PAPR reduction 
scheme. For all samples, let the index of the 

sample which has maximum value be k̂ . 
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The original PAPR can be expressed as 
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For all sub-blocks of the ̂k -th sample, let the 
index of the sub-block which has the maximum 

value be ̂i . 
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The maximum sample  can be re-written as 
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We define the phase set 
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(18) 
where t is the decreasing order that arranges the 
index of the sample values, so t=1 indicates the 
max-value sample. The simulation the PDF of 

tdθ with difference orders of sample is shown in 

Fig. 2 [10]. 
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Fig. 2  PDF of 

tdθ  for difference orders of 

sample 
 

In Fig. 2, we observes that the phases of ˆ,i k
x%  

are very close and that is why the maximum 

amplitude value is on the k̂ -th sample value of 
original signal after passing IFFT. Because the 

phases of ̂k -th sample value of each sub-block 
after IFFT are very close, we try to use this 
property and the amplitudes of ̂

,i k
x% , i=1, 2, ..., M, 

ˆi i≠ to reduce the amplitude of ˆˆ,i k
x% .Now, we 

need to choose proper phase factor to reduce 
PAPR. Since ˆ,i k

x∠%  is very close to ˆˆ,i k
x∠%  for 

ˆi i≠ , we define a new phase factor. 
We define that each ˆ,i k

x∠%  rotates the phase 

with
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, respectively, for ˆi i≠ . 

Then we can obtain four phase factor for some i: 
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and let 
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then, we select one of jφ  which is nearest to the 

reverse direction of ˆˆ,i k
x∠% .  
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We give an example in Fig. 3. 
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Fig. 3  Illustration of selecting iφ  

 
Form Eq. (19), each sub-block has been 

calculated phase vector, except for the î -th sub-
block. 

3.2. A Sub-Optimal Search Algorithm for 
PTS Phase Selection 

Although ˆ,
1

M

i k
i

x
=
∑ % can be reduced, but some 

peak value may be generated with greater peak 
value. We should consider that it is not necessary 
to multiply all sub-blocks by the corresponding 
calculated phase vectors. 

Thus, the data of the i-th sub-block after 

passing IFFT would be multiplied by ije φ  or 

( )0 1je =  for ˆi i≠ , the î -th sub-block after 

passing IFFT would be multiplied by 1. iθ can be 

redefined as: 
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Finally, we calculate all results of PAPR and 
select the proper phase vectors such that the 
transmitted signal has minimum PAPR. Each 
sub-block of x%  has a new phase factor which 
was shown in eq. (23). The modified PTS 
structure is shown in Fig. 4. 

Then, we proposed an algorithm (Algorithm I) 
as follows: 
1. Input signal in frequency domain needs to be 
partitioned into M disjoint sub-blocks, 
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5. Keep ̂i -th sub-block unchanged. Each of the 
other M-1 sub-blocks has tow choice: unchanged 
or rotating to the nearest reverse direction of ˆˆ,i k

x% . 

So, there are totally 12M −  possible candidates. 
6. Calculate the PAPR for each candidate, and 
select the phase vector which brings the 
minimum PAPR in this iteration. 
7. With the new minimum PAPR signal, we 
can repeat step 3 to step 6 until the best 
minimum PAPR signal is found. 
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Fig. 4  The modified PTS structure 

 

3.3. A Modified Sub-Optimal Search 
Algorithm for PTS Phase Selection 

Although the performance of Algorithm I is 
not as good as ESA, the computational 
complexity is reduced. Furthermore, we found 
that there is rarely better minimum PAPR signal 
found after iter=3. Therefore, we proposed a 
modified sub-optimal search algorithm for PTS 
phase selection (Algorithm II). 

The algorithm is shown as follows: 
 

1. Input signal in frequency domain needs to be 
partitioned into M disjoint sub-blocks, 
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2. Each iX%  passes IFFT. 

3. Let ,
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i x
≤ ≤

= % . 

5. Keep ̂i -th sub-block unchanged. Each of the 
other M-1 sub-blocks has tow choice: unchanged 
or rotating to the nearest reverse direction of ˆˆ,i k

x% . 

So, there are totally 12M −  possible candidates. 
6. Calculate the PAPR for each candidate, and 
select the phase vector which brings the 
minimum PAPR in this iteration. 
7. Instead of considering the sample with the 
largest magnitude only, we consider the 2-nd ~k-
th largest magnitude in step 6. 

 

4. NUMERICAL RESULTS 

Computer simulations are shown in this section. 
The simulation parameters are shown as follows. 
We consider an OFDM system with 128 
subcarriers using QPSK modulation. A sub-
optimal search algorithm for PTS phase selection 
we call the proposed ĉ.  

Fig. 5 and Fig. 6 shows the CCDFs for the PTS 
method with the ESA, the PTS method with 
Algorithmĉ when iter=1, iter=2, iter=3, and the 
original OFDM. Fig. 5 is obtained directly from 
the output of IFFT operation for k=128 
subcarriers and M=4 sub-blocks. Fig. 6 is 
obtained directly from the output of IFFT 
operation for k=128 subcarriers and M=8 sub-
blocks. In ESA, four allowed phase factors +1, -1, 
+j, -j (W = 4) are used, and the PAPR reduction 
performance is obtained by a Monte Carlo search 
with WM phase factors.  

In Fig. 5, the 10-3 PAPR of the OFDM signal is 
11.11dB, indicating a large PAPR. The 10-3 
PAPR of the ESA is 7.87dB. It is evident that the 
ESA algorithm can provide better PAPR 
reduction. However, Algorithm ĉ with iteration 
value iter= 1, iter=2 and iter=3, the 10-3 PAPRs 
reduce to 8.58dB, 8.452dB, 8.451dB, 
respectively. Fig. 5 shows that the performance 
of our proposed algorithm ĉ is much closer to 
that of the ESA. However, the search complexity 
is reduced significantly. We list the search 
complexity in Table 1. 

In Fig. 6, the 10-3 PAPR of the OFDM signal is 
11.36dB. The 10-3 PAPR of the ESA is 6.43dB, it 

is evident that the ESA algorithm can provide 
better PAPR reduction. However, Algorithm ĉ 
with iteration value iter= 1, iter=2 and iter=3 
when M = 8, the 10-3 PAPRs reduce to 7.36dB, 
7.162dB, 7.162dB, respectively. Form Fig. 6 
shows that the performance of Algorithm ĉ is 
much closer to that of the ESA. However, the 
search complexity is reduced significantly. We 
list the search complexity in Table 2. 

TABLE  1  
SEARCH COMPLEXITY OF ESA AND 

ALGORITHM I(M=4)  

 Search 
complexity 

M=4, 
W=4 

310−
PAPR 

ESA MW  256 7.874dB 
Algorithm ĉ 

iter=1 
12M −  

8 
8.577dB 

Algorithm ĉ 
iter=2 

12 2M −×  
16 

8.452dB 

Algorithm ĉ 
iter=3 

13 2M −×  
24 

8.451dB 
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Fig. 5  CCDFs of the PAPR for Algorithm Ⅰand ESA 
(M=4). 

 

TABLE  2  
SEARCH COMPLEXITY OF ESA AND 

ALGORITHM I  (M = 8) 

 Search 
complexity 

M=8, 
W=4 

310−
PAPR 

ESA MW  65536 6.428dB 
Algorithm ĉ 

iter=1 
12M −  

128 
7.355dB 

Algorithm ĉ 
iter=2 

12 2M −×  
256 

7.162dB 

Algorithm ĉ 
iter=3 

13 2M −×  
384 

7.162dB 
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Fig. 6  CCDFs of the PAPR for Algorithm Ⅰand 
ESA (M=8).. 

 
Fig. 7 shows the CCDFs for the PTS method 

with Algorithm II with the sample value consider 
the 1st sample , the 1st~2nd, 1st~3rd, 1st~4th and 
1st~5th, the 10-3 PAPRs reduce to 8.642dB, 
8.456dB, 8.439dB, 8.373dB, 8.353dB, 
respectively. Fig. 7 shows that the performance 
of Algorithm II is much closer to that of the ESA. 
However, the search complexity is reduced 
significantly. We list the search complexity in 
Table 3. 

 

TABLE 3  
SEARCH COMPLEXITY OF ESA AND 

ALGORITHM II  (M = 4) 

 Search 
complexity 

M=4, 
W=4 

310−
PAPR 

ESA MW  256 7.872dB 
Algorithm Ċ 

1st 
12M −  

8 
8.642dB 

Algorithm Ċ 
1st~2nd 

12 2M −×  
16 

8.456dB 

Algorithm Ċ 
1st~3rd 

13 2M −×  
24 

8.439dB 

Algorithm Ċ 
1st~4th 

14 2M −×  
32 

8.373dB 

Algorithm Ċ 
1st~5th 

15 2M −×  
40 

8.353dB 
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Fig.7  CCDFs of the PAPR for Algorithm II and 
ESA (M=4). 

 
Fig. 8 shows the CCDFs for the PTS method 

with Algorithm II with the sample value consider 
the 1st sample , the 1st~2nd, 1st~3rd, 1st~4th and 
1st~5th, the 10-3 PAPRs reduce to 7.704dB, 
6.928dB, 6.839dB, 6.734dB, 6.701dB, 
respectively. Fig. 8 shows that the performance 
of Algorithm II is much closer to that of the ESA. 
However, the search complexity is reduced 
significantly. We list the search complexity in 
Table  4. 

 

TABLE 4  
SEARCH COMPLEXITY OF ESA AND 

ALGORITHM II  (M = 8) 

 Search 
complexity 

M=8, 
W=4 

10-2 
PAPR 

ESA MW  65536 6.244dB 
Algorithm Ċ 

1st 
12M −  

128 
7.704dB 

Algorithm Ċ 
1st~2nd 

12 2M −×  
256 

6.928dB 

Algorithm Ċ 
1st~3rd 

13 2M −×  
384 

6.839dB 

Algorithm Ċ 
1st~4th 

14 2M −×  
512 

6.734dB 

Algorithm Ċ 
1st~5th 

15 2M −×  
640 

6.701dB 
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Fig.8  CCDFs of the PAPR for Algorithm II and 
ESA (M=8). 

5. CONCLUSION  

Two algorithms for the PTS method are 
proposed to reduce the PAPR of OFDM signals 
in this paper. The simulation results show that 
those schemes provides good the PAPR reduction 
performance. And our proposed method reduces 
the search complexity while keeping good PAPR 
performance. 
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