
An Extended ACS Approach for Continuous

Domains
Min-Thai Wu

#1
, Tzung-Pei Hong

*2
, Chung-Nan Lee

#3

#
Department of Computer Science and Engineering, National Sun Yat-sen University

70, Lienhai Rd., Kaohsiung 804, Taiwan, R.O.C.
1
d953040015@student.nsysu.edu.tw

3
cnlee@cse.nsysu.edu.tw

*
Department of Computer Science and Information Engineering, National University of Kaohsiung

700, Kaohsiung University Rd., Kaohsiung 811, Taiwan, R.O.C
2
tphong@nuk.edu.tw

Abstract— This paper proposes a dynamic-

edge ACS (DEACS) algorithm for solving

continuous variables problems. It can

dynamically generate edges between two nodes

and give a pheromone measures for them in a

continuous solution space through distribution

functions. The proposed algorithm retains the

original process and characteristics of the

traditional ACS. Several constrained functions

are also evaluated to demonstrate the

performance of the proposed algorithm.

Keywords— Ant colony system, Constrained

function, Continuous space, Distribution

function, Dynamic edge.

1. INTRODUCTION

Ant colony systems (ACS) have been widely
applied to find near-optimal solutions for NP-

hard problems. An ACS adopts distributed

computation and uses a constructive greedy

heuristic algorithm [5] with positive feedback to
search for solutions. ACS algorithms have been

used to discover good solutions to many

applications. They are also adopted to solve
algebraic equations in mathematics [8].

Unfortunately, ant-based algorithms are

originally designed for a discrete solution space.

Therefore, continuous solution spaces must be
encoded into discrete solution spaces for ACS to

execute.

Several ant-based methods were proposed to
support continuous solution spaces [5][6][7]. In

general, the whole process was modified to make

the methods work well in a continuous solution
space. However, these methods preserved few

characteristics of the original ACS algorithm,

losing a lot of its advantages. The paper thus

proposes for continuous solution spaces an ACS

algorithm, which retains the process of the

original ACS algorithm to preserve its good

characteristics. The proposed algorithm
recommends a new concept of representing the

pheromone by a distribution function for ACS,

such that it can easily simulate and handle a

continuous search space. Experiments on
maximizing several constrained functions are

also made, and the results show that the proposed

approach works well in solving continuous
variables problems.

2. REVIEW OF ANT COLONY

SYSTEMS

This section reviews work related to ACS. The

concepts of the ant algorithm and ACS, and some

previous approaches for using ACS in a
continuous solution space are briefly described.

2.1. Ant Colony System

ACS [2], proposed by Dorigo et al., is an
algorithm for finding solutions to optimization

problems. Details of the algorithm are described

below.

Initialize

Set the size of the ant colony’s population
and put each ant on the starting node

 do

while (there are some ants which have
not already built their solution)

Choose an ant which has not

finished its trip
The ant applies a state transition

rule to incrementally build a

solution

Update the pheromone using the
local updating rule

end

Update the pheromone using the

global updating rule

while (end conditions are not met)
Output the best solution

End

2.2. Existing ACS Algorithms for

Continuous Solution Spaces

Traditionally, ant-based algorithms are applied
to discrete problems, which are represented as a

graph with nodes and edges.

In the past, it was difficult to use ant-based
algorithms to solve problems with a continuous

solution space due to the coding restriction. A

common way to deal with this issue is to map a

continuous solution space to its simplified
discrete solution space. However, this creates the

following two problems. Firstly, a continuous

solution space cannot be totally mapped to a
discrete solution space, such that the global

optimum may not exist in the encoded space.

Secondly, if the minimal discrete distance scale
of the encoded space is reduced, the coding

length increases, and it lowers the performance of

ant-based algorithms.

Nest-based algorithms were then proposed for
applying an ant algorithm to a continuous

solution space [5][6][7]. The solution space is

defined as a plane (2-dimentional solution space)
and each point in the plane is a possible solution.

However, these methods are more similar to

particle swarm optimization (PSO) than to the

original ant algorithm.
Pourtakdoust and Nobahari then proposed an

extended ACS algorithm to solve the math

equation [8]. Its process is similar to that of
traditional ACS. However, it is not a general

algorithm for all problems with a continuous

solution space. The paper thus proposes a
continuous ACS algorithm that retains benefits

and characteristics of the original ACS algorithm

and can be easily applied to problems with a

continuous solution space.

3. DYNAMIC-EDGE ACS ALGORITHM

This section describes the proposed ACS-

based algorithm for continuous solution spaces. It

is called the dynamic-edge ant colony system
(DEACS). The continuous version of each

operator is defined by pheromone distribution

functions, explained below.

3.1. Pheromone Distribution Functions

In traditional ACS algorithms, an edge that can

be selected includes an amount of pheromone.
Unfortunately, it is not available in the

continuous space since the numbers of edges and

nodes are infinite in a continuous search space.
The proposed DEACS algorithm thus adopts a

new mechanism to store the pheromone

information for resolving the issue. Assume a

possible solution is composed of several
variables. The proposed approach defines a

function called pheromone distribution function

onto the domain of each variable. Thus, each
possible value of a variable will be assigned a

content of pheromone by this distribution

function.
DEACS works like the conventional ACS. The

initial content of pheromone is defined before the

first iteration. This means that the initial

pheromone distribution function may be set as a
constant function. After several iterations, some

influence functions that are produced by the

global updating process will be added onto the
initial pheromone distribution function. These

influence functions and the initial pheromone

distribution function will combine and form a

new pheromone distribution function. An
example is shown in Fig. 1.

Fig. 1 Example of pheromone distribution for a

variable

In Fig. 1, the initial pheromone distribution

function is a constant function of 1.3. A part of
the pheromone distribution is a trapezoid

function (called an influence function) generated

by the updating rules, which will be introduced

later. The increase is caused from a previous
route being selected by an ant. In this example,

2.5

1.3

2.0 2.6 6.5

value of a variable

Init. Pheromone

1.3

1.0

the node with the value 1.0 has a pheromone

density of 1.3, and the one with 2.6 has a

pheromone density of 2.5. Since DEACS works

in a continuous environment, there will be
infinite edges and nodes. The influence functions

cannot only provide the information of

pheromone but also are used to produce dynamic
edges.

3.2. Global Updating Rule in DEACS

The global updating rule increases the
pheromone value of the best tour and decreases

those of the others. DEACS not only increases

the pheromone value of the best tour but also
influence the content of pheromone in the nearby

area. Therefore, the influence function is not only

a single value, but more like a distribution
function. The center of the function is the next

node (value) selected. It indicates the influence of

an ant passing the selected node on the update of

the pheromone. The function can be of any type,
and the flexibility is left to users. An example of

a trapezoid influence function is shown in Fig. 2.

Fig. 2 Example of a trapezoid influence function

When global update is executed, the influence

function whose center is at the chosen value of a

variable is superimposed on the original

distribution function of the pheromone for the
variable. For example, if the initial pheromone

distribution is a uniform one, after an influence

function with its center 2.6 is added, the new
distribution function of pheromone becomes the

one shown in Fig. 1.

3.3. Local Updating Rule in DEACS

When an ant constructs a path, the local

updating rule immediately reduces (volatilizes)

the pheromone of the nodes on the path to

prevent all ants in the population from searching

toward similar solutions. This can be easily

achieved by reducing the height values of the

matched influence function representing the node.
An influence function is matched if the value

selected falls within the range of the influence

function. If the reduced height value of an
influence function is less than the initial amount

of pheromone, the influence function is removed

from the distribution function. In this way,
DEACS removes some unimportant information,

and thus reduces the storage space required. The

new height value due to the local update is

calculated as:
Heightnew = (1-p)×Heightold + p×Pheromonebase,

0 < p < 1,

where Heightnew is the new height value of the
processed influence function after the local

update, Heightold is the height value before the

local updating process, Pheromonebase is a
parameter value less than Pheromoneinitial, and p

is a weight constant controlling the two items.

The parameter Pheromonebase allows the height

value of an influence function possibly less than
Pheromoneinitial such that unimportant influence

functions may be removed.

3.4. Generating Dynamic Edges

When a value (node) of a variable is to be

selected, there are an infinite number of choices

due to the continuous space. Since there are
numerous edges, the proposed approach thus

dynamically generates an edge whenever

necessary. It first calculates the total area A of the
pheromone distribution function for the variable

(dimension) being currently processed. The area

A thus represents the current total amount of

pheromone for the variable in solving the
problem. The proposed approach then generates a

random number r, whose range is among 0 to A.

It then finds the value of the horizontal axis to
which the integral of the distribution function

from the minimum value of the variable equals r.

The value of the horizontal axis can be thought of
as a dynamic node for the variable, and a

dynamic edge is formed between the node

selected for the previous variable and the current

node. DEACS will generate several random
numbers, each corresponding to a dynamic node

and edge. It then selects one edge according to

the pseudo-random proportional rule.

3.5 Proposed DEACS Algorithm

The proposed algorithm is proposed below.

selected node

Influence function

value of a variable

Pheromone

INPUT: A problem to be solved, a number q

of ants, an initial pheromone density τ0, a number

d of dynamic edges, a maximum number G of

iterations, a base pheromone density local
updating ratio and a global updating ratio.

OUTPUT: A nearly optimal solution to the

problem.
STEP 1: Define the order of the variables as

the stage order in the search graph and an

appropriate fitness function for evaluating paths.
STEP 2: Initially set the pheromone

distribution function of each variable as the given

initial pheromone density τ0 and the current best

solution Sc as empty.
STEP 3: Set the initial generation number g =

1.

STEP 4: Build a complete route for each
artificial ant by the following substeps.

STEP 4.1: Set s = 1, where s is used to keep

the identity number of the current variable
(stage) to be processed in the graph.

STEP 4.2: Get the corresponding pheromone

distribution function of the s-th variable.

STEP 4.3: Produce d dynamic edges
according to the method in Section 3.4.

STEP 4.4: Select a path from the d dynamic

edges according to the pseudo-random
proportional rule.

STEP 4.5: Initialize the table of influence

functions for the s-th variable if the table

isn’t exist.
STEP 4.6: Update the pheromone

distribution function by modifying the record

value in the table of influence functions from
the selected edge according to the local

updating rule mentioned in Section 3.3.

STEP 4.7: Set s = s + 1.
STEP 4.8: If the ant has not constructed its

own solution (that is, s is equal to or less than

the number of variables for the problem), go

to STEP 4.2.
STEP 5: Evaluate the fitness value of the

solution obtained by each artificial ant according

to the fitness function defined in STEP 2. If Sc is
empty (the first generation) or the best solution in

the iteration is better than Sc, set Sc as the current

best solution.
STEP 6: Find the one with the highest fitness

value among the q ants, and get the values of the

variables for the best ant.

STEP 7: Generate the corresponding influence
functions for the variable values found in STEP 6

and then update the distribution functions (the

tables of influence functions) of the variables

according to the global updating process

mentioned in Section 3.2.

STEP 8: If g = G, output Sc; otherwise, g = g +

1 and go to STEP 4.

4. EXPERIMENTAL RESULTS

Experiments were made to show the

performance and behavior of the proposed

DEACS. The experiments were implemented in
C/C++ on a personal computer with an Intel Core

2 Quad 6600 CPU and 4 GB of RAM. Several

mathematical functions with constraints for

maximum values were used in the experiments.
DEACS was compared to some existing

approaches including API [7], GA, and CACS [8].

CACS was a special-purpose ACS for resolving
mathematical functions. It used some complex

designs to approach the optimal solution to a

function. The GA approach adopted here was the
traditional genetic algorithm and it decoded the

solution space as a binary string. API was

inspired by a primitive ant’s recruitment behavior.

The recruitment technique made the population
proceed towards the optimum solution. The same

parameter settings from the previous experiments

were used. The seven test functions are listed in
Table 1.

TABLE 1

SEVEN TEST FUNCTIONS FOR COMPARISON

1.

 { }

2. (
)

 ()
 { }

3. ∑ (
 ()) { }

4. ∑

 ∏ (

√
)

 { }

5. ∑

 ∏ (

√
)

 { }

6.
((

)

 ⁄)

((

))
 { }

7. (

) ((

)) { }

All of the above test functions had a minimum

value of 0, which was to be found. Thus, getting

a function value closer to zero meant a better
performance. The experimental results by the

different approaches are summarized in Table 2.

From Table 2, it could be observed that

DEACS and CACS could obtain satisfactory
solutions for these test functions when compared

to the others. For Functions 1 and 2, since the

functions were simple and the encoding spaces
were dispersed in GA and API, GA and API

could obtain the minimum value 0 as the

solutions. DEACS and CACS could just get the

values very close to 0. In the other complex

functions, DEACS and CACS could obtain better
performances than the other two methods.

TABLE 2

Comparisons of DEACS and The Three Other

Methods

 f1 f2 f3 f4 f5 f6 f7

D

E

A

C

S

3.1e-7 5.3e-8 3.3e-2 3.6e-3 5.9e-7 4.2e-3 4.5e-2

C

A

C

S

1.5e-

67

1.2e-

31

4.8 5.0e-3 1.1e-2 4.6e-3 4.2e-6

A

P

I

0.0 0.0 7.476 0.004 0.250 0.006 0.093

G

A

0.0 0.0 2.124 0.030 0.139 0.073 0.133

5. CONCLUSION

This work proposed an extended ACS
algorithm for solving continuous variables

problems. The proposed algorithm is different

from the existing ant-based algorithms in that it
does not have fixed paths and nodes. Instead, it

dynamically produces paths in the continuous

solution space by applying distribution functions
of the pheromone. The experimental results show

that DEACS is very competitive to the existing

ACS and some other evolutionary algorithms. In

the future, the DEACS algorithm will be applied
to more problems in addition to the constrained

functions.

ACKNOWLEDGMENT

This research was supported by the National

Science Council of the Republic of China under
contract NSC 100-2221-E-390-026-MY3.

REFERENCES

[1] A. Colorni, M. Dorigo, and V. Maniezzo,

“Distributed optimization by ant colonies,”

European Conference on Artificial Life, pp.

134–142, Paris, France. Elsevier, 1991.
[2] M. Dorig and L. M. Gambardella, “Ant

colony system: a cooperative learning

approach to the traveling salesman problem,”
IEEE Transactions on Evolutionary

Computation, vol. 1, pp. 53–66, 1997.

[3] M. Dorigo, V. Maniezzo, and A. Colorni,

“Ant system: optimization by a colony of
coop- erating agents,” IEEE Transactions on

Systems, Man, and Cybernetics Part B, vol.

26, pp. 29–41, 1996.
[4] W. Jiang, Y. H. Xu, and Y.S. Xu, “A novel

data mining algorithm based on ant colony

system,” International Conference on
Machine Learning and Cybernetics, vol. 3,

pp. 1919– 1923, Guangzhou, 2005.

[5] L. Kuhn, Ant Colony Optimization for

Continuous Space, Master’s Thesis, The
Department of Information Technology and

Electrical Engineering of The University of

Queensland, 2002.
[6] H. Li and S. Xiong, “On ant colony

algorithm for solving continuous

optimization problem,” International
Conference on Intelligent Information

Hiding and Multimedia Signal Processing,

pp. 1450–1453, 2008.

[7] N. Monmarche, G. Venturini, and M.
Slimane, “On how pachycondyla apicalis

ants suggest a new search algorithm,”

Future Generation Computer Systems, vol.
16, pp. 937-946, Jun. 2000.

[8] S. H. Pourtakdoust and H. Nobahari, “An

extension of ant colony system to

continuous optimization problems,” Lecture
Notes in Computer Science, vol. 3172, pp.

158–173, 2004.

