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Abstract— This paper proposes a dynamic-

edge ACS (DEACS) algorithm for solving 

continuous variables problems. It can 

dynamically generate edges between two nodes 

and give a pheromone measures for them in a 

continuous solution space through distribution 

functions. The proposed algorithm retains the 

original process and characteristics of the 

traditional ACS. Several constrained functions 

are also evaluated to demonstrate the 

performance of the proposed algorithm. 
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1. INTRODUCTION 

Ant colony systems (ACS) have been widely 
applied to find near-optimal solutions for NP-

hard problems. An ACS adopts distributed 

computation and uses a constructive greedy 

heuristic algorithm [5] with positive feedback to 
search for solutions. ACS algorithms have been 

used to discover good solutions to many 

applications. They are also adopted to solve 
algebraic equations in mathematics [8]. 

Unfortunately, ant-based algorithms are 

originally designed for a discrete solution space. 

Therefore, continuous solution spaces must be 
encoded into discrete solution spaces for ACS to 

execute.  

Several ant-based methods were proposed to 
support continuous solution spaces [5][6][7]. In 

general, the whole process was modified to make 

the methods work well in a continuous solution 
space. However, these methods preserved few 

characteristics of the original ACS algorithm, 

losing a lot of its advantages. The paper thus 

proposes for continuous solution spaces an ACS 

algorithm, which retains the process of the 

original ACS algorithm to preserve its good 

characteristics. The proposed algorithm 
recommends a new concept of representing the 

pheromone by a distribution function for ACS, 

such that it can easily simulate and handle a 

continuous search space. Experiments on 
maximizing several constrained functions are 

also made, and the results show that the proposed 

approach works well in solving continuous 
variables problems. 

2. REVIEW OF ANT COLONY 

SYSTEMS 

This section reviews work related to ACS. The 

concepts of the ant algorithm and ACS, and some 

previous approaches for using ACS in a 
continuous solution space are briefly described. 

2.1. Ant Colony System 

ACS [2], proposed by Dorigo et al., is an 
algorithm for finding solutions to optimization 

problems. Details of the algorithm are described 

below. 

 
Initialize 

Set the size of the ant colony’s population 
and put each ant on the starting node 

 do 

while (there are some ants which have 
not already built their solution) 

Choose an ant which has not 

finished its trip 
The ant applies a state transition 

rule to incrementally build a 

solution 

Update the pheromone using the 
local updating rule 



end 

Update the pheromone using the 

global updating rule 

while (end conditions are not met) 
Output the best solution 

End 

2.2. Existing ACS Algorithms for 

Continuous Solution Spaces 

Traditionally, ant-based algorithms are applied 
to discrete problems, which are represented as a 

graph with nodes and edges.  

In the past, it was difficult to use ant-based 
algorithms to solve problems with a continuous 

solution space due to the coding restriction. A 

common way to deal with this issue is to map a 

continuous solution space to its simplified 
discrete solution space. However, this creates the 

following two problems. Firstly, a continuous 

solution space cannot be totally mapped to a 
discrete solution space, such that the global 

optimum may not exist in the encoded space. 

Secondly, if the minimal discrete distance scale 
of the encoded space is reduced, the coding 

length increases, and it lowers the performance of 

ant-based algorithms. 

Nest-based algorithms were then proposed for 
applying an ant algorithm to a continuous 

solution space [5][6][7]. The solution space is 

defined as a plane (2-dimentional solution space) 
and each point in the plane is a possible solution. 

However, these methods are more similar to 

particle swarm optimization (PSO) than to the 

original ant algorithm.  
Pourtakdoust and Nobahari then proposed an 

extended ACS algorithm to solve the math 

equation [8]. Its process is similar to that of 
traditional ACS. However, it is not a general 

algorithm for all problems with a continuous 

solution space. The paper thus proposes a 
continuous ACS algorithm that retains benefits 

and characteristics of the original ACS algorithm 

and can be easily applied to problems with a 

continuous solution space. 

3. DYNAMIC-EDGE ACS ALGORITHM 

This section describes the proposed ACS-

based algorithm for continuous solution spaces. It 

is called the dynamic-edge ant colony system 
(DEACS). The continuous version of each 

operator is defined by pheromone distribution 

functions, explained below. 

3.1. Pheromone Distribution Functions 

In traditional ACS algorithms, an edge that can 

be selected includes an amount of pheromone. 
Unfortunately, it is not available in the 

continuous space since the numbers of edges and 

nodes are infinite in a continuous search space. 
The proposed DEACS algorithm thus adopts a 

new mechanism to store the pheromone 

information for resolving the issue. Assume a 

possible solution is composed of several 
variables. The proposed approach defines a 

function called pheromone distribution function 

onto the domain of each variable. Thus, each 
possible value of a variable will be assigned a 

content of pheromone by this distribution 

function. 
DEACS works like the conventional ACS. The 

initial content of pheromone is defined before the 

first iteration. This means that the initial 

pheromone distribution function may be set as a 
constant function. After several iterations, some 

influence functions that are produced by the 

global updating process will be added onto the 
initial pheromone distribution function. These 

influence functions and the initial pheromone 

distribution function will combine and form a 

new pheromone distribution function. An 
example is shown in Fig. 1. 

  

 

Fig. 1  Example of pheromone distribution for a 

variable 

 
In Fig. 1, the initial pheromone distribution 

function is a constant function of 1.3. A part of 
the pheromone distribution is a trapezoid 

function (called an influence function) generated 

by the updating rules, which will be introduced 

later. The increase is caused from a previous 
route being selected by an ant. In this example, 
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the node with the value 1.0 has a pheromone 

density of 1.3, and the one with 2.6 has a 

pheromone density of 2.5. Since DEACS works 

in a continuous environment, there will be 
infinite edges and nodes. The influence functions 

cannot only provide the information of 

pheromone but also are used to produce dynamic 
edges. 

3.2. Global Updating Rule in DEACS 

The global updating rule increases the 
pheromone value of the best tour and decreases 

those of the others. DEACS not only increases 

the pheromone value of the best tour but also 
influence the content of pheromone in the nearby 

area. Therefore, the influence function is not only 

a single value, but more like a distribution 
function. The center of the function is the next 

node (value) selected. It indicates the influence of 

an ant passing the selected node on the update of 

the pheromone. The function can be of any type, 
and the flexibility is left to users. An example of 

a trapezoid influence function is shown in Fig. 2. 

 

Fig. 2  Example of a trapezoid influence function 

 
When global update is executed, the influence 

function whose center is at the chosen value of a 

variable is superimposed on the original 

distribution function of the pheromone for the 
variable. For example, if the initial pheromone 

distribution is a uniform one, after an influence 

function with its center 2.6 is added, the new 
distribution function of pheromone becomes the 

one shown in Fig. 1. 

3.3. Local Updating Rule in DEACS 

When an ant constructs a path, the local 

updating rule immediately reduces (volatilizes) 

the pheromone of the nodes on the path to 

prevent all ants in the population from searching 

toward similar solutions. This can be easily 

achieved by reducing the height values of the 

matched influence function representing the node. 
An influence function is matched if the value 

selected falls within the range of the influence 

function. If the reduced height value of an 
influence function is less than the initial amount 

of pheromone, the influence function is removed 

from the distribution function. In this way, 
DEACS removes some unimportant information, 

and thus reduces the storage space required. The 

new height value due to the local update is 

calculated as: 
Heightnew = (1-p)×Heightold + p×Pheromonebase, 

0 < p < 1, 

where Heightnew is the new height value of the 
processed influence function after the local 

update, Heightold is the height value before the 

local updating process, Pheromonebase is a 
parameter value less than Pheromoneinitial, and p 

is a weight constant controlling the two items. 

The parameter Pheromonebase allows the height 

value of an influence function possibly less than 
Pheromoneinitial such that unimportant influence 

functions may be removed. 

3.4. Generating Dynamic Edges 

When a value (node) of a variable is to be 

selected, there are an infinite number of choices 

due to the continuous space. Since there are 
numerous edges, the proposed approach thus 

dynamically generates an edge whenever 

necessary. It first calculates the total area A of the 
pheromone distribution function for the variable 

(dimension) being currently processed. The area 

A thus represents the current total amount of 

pheromone for the variable in solving the 
problem. The proposed approach then generates a 

random number r, whose range is among 0 to A. 

It then finds the value of the horizontal axis to 
which the integral of the distribution function 

from the minimum value of the variable equals r. 

The value of the horizontal axis can be thought of 
as a dynamic node for the variable, and a 

dynamic edge is formed between the node 

selected for the previous variable and the current 

node. DEACS will generate several random 
numbers, each corresponding to a dynamic node 

and edge. It then selects one edge according to 

the pseudo-random proportional rule. 

3.5 Proposed DEACS Algorithm 

The proposed algorithm is proposed below. 

  

selected node 

Influence function 

  

value of a variable 

Pheromone 



INPUT: A problem to be solved, a number q 

of ants, an initial pheromone density τ0, a number 

d of dynamic edges, a maximum number G of 

iterations, a base pheromone density local 
updating ratio and a global updating ratio. 

OUTPUT: A nearly optimal solution to the 

problem. 
STEP 1: Define the order of the variables as 

the stage order in the search graph and an 

appropriate fitness function for evaluating paths. 
STEP 2: Initially set the pheromone 

distribution function of each variable as the given 

initial pheromone density τ0 and the current best 

solution Sc as empty. 
STEP 3: Set the initial generation number g = 

1. 

STEP 4: Build a complete route for each 
artificial ant by the following substeps. 

STEP 4.1: Set s = 1, where s is used to keep 

the identity number of the current variable 
(stage) to be processed in the graph. 

STEP 4.2: Get the corresponding pheromone 

distribution function of the s-th variable. 

STEP 4.3: Produce d dynamic edges 
according to the method in Section 3.4. 

STEP 4.4: Select a path from the d dynamic 

edges according to the pseudo-random 
proportional rule. 

STEP 4.5: Initialize the table of influence 

functions for the s-th variable if the table 

isn’t exist.  
STEP 4.6: Update the pheromone 

distribution function by modifying the record 

value in the table of influence functions from 
the selected edge according to the local 

updating rule mentioned in Section 3.3. 

STEP 4.7: Set s = s + 1. 
STEP 4.8: If the ant has not constructed its 

own solution (that is, s is equal to or less than 

the number of variables for the problem), go 

to STEP 4.2. 
STEP 5: Evaluate the fitness value of the 

solution obtained by each artificial ant according 

to the fitness function defined in STEP 2. If Sc is 
empty (the first generation) or the best solution in 

the iteration is better than Sc, set Sc as the current 

best solution. 
STEP 6: Find the one with the highest fitness 

value among the q ants, and get the values of the 

variables for the best ant. 

STEP 7: Generate the corresponding influence 
functions for the variable values found in STEP 6 

and then update the distribution functions (the 

tables of influence functions) of the variables 

according to the global updating process 

mentioned in Section 3.2. 

STEP 8: If g = G, output Sc; otherwise, g = g + 

1 and go to STEP 4. 

4. EXPERIMENTAL RESULTS 

Experiments were made to show the 

performance and behavior of the proposed 

DEACS. The experiments were implemented in 
C/C++ on a personal computer with an Intel Core 

2 Quad 6600 CPU and 4 GB of RAM. Several 

mathematical functions with constraints for 

maximum values were used in the experiments. 
DEACS was compared to some existing 

approaches including API [7], GA, and CACS [8]. 

CACS was a special-purpose ACS for resolving 
mathematical functions. It used some complex 

designs to approach the optimal solution to a 

function. The GA approach adopted here was the 
traditional genetic algorithm and it decoded the 

solution space as a binary string. API was 

inspired by a primitive ant’s recruitment behavior. 

The recruitment technique made the population 
proceed towards the optimum solution. The same 

parameter settings from the previous experiments 

were used. The seven test functions are listed in 
Table 1. 

TABLE 1 

SEVEN TEST FUNCTIONS FOR COMPARISON 
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All of the above test functions had a minimum 

value of 0, which was to be found. Thus, getting 

a function value closer to zero meant a better 
performance. The experimental results by the 

different approaches are summarized in Table 2. 

From Table 2, it could be observed that 

DEACS and CACS could obtain satisfactory 
solutions for these test functions when compared 

to the others. For Functions 1 and 2, since the 

functions were simple and the encoding spaces 
were dispersed in GA and API, GA and API 



could obtain the minimum value 0 as the 

solutions.  DEACS and CACS could just get the 

values very close to 0. In the other complex 

functions, DEACS and CACS could obtain better 
performances than the other two methods. 

 

TABLE 2 

Comparisons of DEACS and The Three Other 

Methods 

 f1 f2 f3 f4 f5 f6 f7 

D

E

A

C

S 

3.1e-7 5.3e-8 3.3e-2 3.6e-3 5.9e-7 4.2e-3 4.5e-2 

C

A

C

S 

1.5e-

67 

1.2e-

31 

4.8 5.0e-3 1.1e-2 4.6e-3 4.2e-6 

A

P

I 

0.0 0.0 7.476 0.004 0.250 0.006 0.093 

G

A 

0.0 0.0 2.124 0.030 0.139 0.073 0.133 

 

5. CONCLUSION 

This work proposed an extended ACS 
algorithm for solving continuous variables 

problems. The proposed algorithm is different 

from the existing ant-based algorithms in that it 
does not have fixed paths and nodes. Instead, it 

dynamically produces paths in the continuous 

solution space by applying distribution functions 
of the pheromone. The experimental results show 

that DEACS is very competitive to the existing 

ACS and some other evolutionary algorithms. In 

the future, the DEACS algorithm will be applied 
to more problems in addition to the constrained 

functions. 
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