
4
2010
2

December

The Anatomy Study of Fallible
Processes Agreement for
Cloud Computing
 Shu-Ching Wang, Shun-Sheng Wang,
Kuo-Qin Yan and Chia-Ping Huang

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

The Anatomy Study of Fallible Processes Agreement
for Cloud Computing

Shu-Ching Wang Shun-Sheng Wang* Kuo-Qin Yan* Chia-Ping Huang
Chaoyang University

of Technology
Chaoyang University

of Technology
Kao Fong College of

Digital Contents
National Cheng
Kung University

scwang@cyut.edu.tw sswang@cyut.edu.tw kqyann@gmail.com blue_love520@hot
mail.com

*: Corresponding author

Abstract

Cloud computing is Internet-based computing, whereby shared resources, software, and
information are provided to users on demand. In general, the users of cloud computing do not
own the physical infrastructure, instead avoiding capital expenditure by renting usage from a
third-party provider. They consume resources as a service and pay only for resources that they
use. However, there are many applications running synchronously in the service platform of
cloud computing. The agreement problem is a fundamental issue of reliable distributed sys-
tems. Nevertheless, all previous studies of the agreement problem were visited in a network
topology with faulty hardware components. However, in a cloud computing, there are a lot of
application processes to provide the services of users. In addition, the influence of faulty
process is different with the influence of faulty hardware component. Therefore, previous
protocols for the agreement problem are not suitable for a cloud computing with fallible
processes. To enhance the reliability, the agreement problem in a cloud computing with falli-
ble processes is revisited in this study. The proposed protocol can solve the agreement prob-
lem with a minimal number of rounds of message exchange and tolerates a maximal number
of faulty processes.

Keywords: Agreement problem; Byzantine agreement; Consensus problem; Interactive con-
sistency; Distributed system; Fault tolerance; Cloud computing.

1. Introduction

Cloud computing is a new concept in distributed systems. It is currently used mainly in

business applications in which computers cooperate to perform a specific service together. In
addition, the Internet applications are continuously enhanced with multimedia, and vigorous
development of the device quickly occurs in the network system [1,3,9,11,14,21]. As network
bandwidth and quality outstrip computer performance, various communication and computing
technologies previously regarded as being of different domains can now be integrated, such as
telecommunication, multimedia, information technology, and construction simulation. There-
fore, cloud computing is currently used many commodity nodes that can cooperate to perform
a specific service together. Thus, applications associated with network integration have
gradually attracted considerable attention.

The users can use the application platform of cloud computing to execute the personal
software or program in their capacity of account. In a cloud computing, users can access the
operational capability faster with Internet application [14], and the computer systems have the
high stability to handle the service requests from many users in the environment. Today, a
new application service of operation system is emerged and it changes the user’s usage in the
past. Originally, the Internet infrastructure is continuous grow that many application services

 - 160 - 資訊科技國際期刊第四卷第二期

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

can be provided in the Internet. In a distributed computing system, components allocated to
different places or in separate units are connected so that they may collectively be used to
greater advantage [4]. The reliability is improved in a cloud computing by using the
low-power hosts. In addition, cloud computing has greatly encouraged distributed system de-
sign and application to support user-oriented service applications [11]. Furthermore, many
applications of cloud computing can increase user convenience, such as YouTube [14]. Com-
ponent reliability is one of the most important aspects of cloud computing as it ensures overall
reliability and fluency. Thus, the processes in a distributed system must be synchronously
completed and all nodes of cloud computing must achieve common agreement. To ensure the
cloud computing is reliable, a mechanism to ensure that all nodes can reach an agreed value is
thus necessary.

The Internet platform of cloud computing provides many applications for users, just like
video, music et al. Therefore, each node of a cloud computing needs to run many processes
and needs to execute user’s requests synchronously. In the cloud computing, each node passes
messages through transmission media to other nodes to cooperatively complete user requests.
Many users in the cloud computing can execute application services simultaneously. There-
fore, the reliability issue of a cloud computing needs to be considered. However, the symp-
toms of faulty processes can influence the normal operation of a system. The cloud computing
system can tolerate the faulty processes in the service environment because the system should
respond to user requests quickly and completely the user requests as service. The requisite
large number of nodes maybe meet some nodes will be fault to introduce faulty processes into
the system. However, the system must allow for the tolerance of faults while maintaining
functionality. Simultaneously, in the cloud computing, nodes receive the user’s requests
maybe influence by the faulty processes. Hence, to remove the affect of faulty processes
needs to be mitigated. In a cloud computing, achieving perfect reliability must be accom-
plished by allowing a given set of nodes to reach a common agreement even in the presence
of faulty processes. The agreement problem has been studied in the literature
[5,7,10,12,13,15]. The agreement problem is one of the most important issues for designing a
reliable distributed system [6,8,12]. Solving the agreement problem, many applications can be
achieved [6,8,12]. Therefore, the agreement problem in a cloud computing with faulty proc-
esses is revised in this study. The proposed protocol is named Protocol of Fallible Processes
Agreement (PFPA in short) and can lead to an agreement of all healthy nodes in a cloud com-
puting.

The rest of this paper is organized as follows. Section 2 discusses the applications of
cloud computing and the topology of cloud computing. The related issues of agreement prob-
lem are illustrated in Section 3. Then, the proposed protocol PFPA is introduced and illus-
trated in detail in Section 4. In Section 5, an example of the execution of the proposed proto-
col is given. Section 6 demonstrates the correctness and complexity of PFPA. Section 7 con-
cludes this paper.

2. Related Work

In previous literatures, the agreement problem has been solved in various network to-

pologies with hardware fault. However, previous studies of the agreement problem [17] do
not specifically address the cloud computing with faulty processes to order the application of
Internet. Hence, in this section, the applications of cloud computing are illustrated first. Then,
the network construction of cloud computing is discussed. Subsequently, three kinds of
agreement problem are shown.

資訊科技國際期刊第四卷第二期 - 161 -

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

2.1 Practical Applications

Cloud computing is a kind of distributed computing where massively scalable IT-related
capabilities are provided to multiple external customers “as a service” using Internet tech-
nologies [14]. The cloud providers have to achieve a large, general-purpose computing infra-
structure; and virtualization of infrastructure for different customers and services to provide
the multiple application services. The ZEUS Company has developed several types of soft-
ware [17] that can create, manage, and deliver exceptional online services from physical and
virtual datacenters or from any cloud environment, such as ZXTM [18] and ZEUS Web
Server (ZWS) [20], as shown in Figure 1 [22].

Figure 1 The resource of cloud infrastructure with virtualization [22]

A cloud infrastructure virtualizes large-scale computing resources and packages them up

into smaller quantities [22]. Furthermore, the ZEUS Company develops software that can let
the cloud provider easily and cost-effectively offer every customer a dedicated application
delivery solution [23]. The ZXTM software is much more than a shared load balancing ser-
vice and it offers a low-cost starting point in hardware development, with a smooth and
cost-effective upgrade path to scale as your service grows. The concept is shown in Figure 2.

Figure 2 The high performance load balance of ZXTM

The ZEUS provided network framework can be utilized to develop new cloud computing

methods [17,23], and is utilized in the current work. In this network composition that can
support the network topology of cloud computing used in our study [20,22]. According to the

 - 162 - 資訊科技國際期刊第四卷第二期

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

ZEUS network topology, a network topology of cloud computing is proposed to solve the
agreement problem.

2.2 Network Topology

Cloud computing is a new distributed system concept that has been implemented by
businesses such as Google [21] and Amazon [16]. Google provides various applications on
their Internet platform such as Gmail and YouTube [21]. In addition, Google provides free
storage capacity with gigabytes for each user. The big and powerful Google search engine al-
lows users to find multiple results from different file types on the Internet. In previous litera-
ture, the agreement problem has been solved in various network topologies. However, previ-
ous studies of agreement problems [2,5,6,7,8,10,12,13,15] are not specifically address cloud
computing to order the application of Internet. Hence, in this study, the topology of a cloud
computing is applied. Subsequently, the agreement problem with fallible processes in the to-
pology of a cloud computing is discussed. Cloud computing is a new distributed system
computing concept in which nodes are interconnected with the Internet; the network is as-
sumed reliable and synchronous. Figure 3 is the topology of cloud computing used in this
study. The topology is composed of two levels, as follows:

(1) The nodes in A-Level group receive the service requests from users of different types
of applications. Therefore, the nodes of A-Level group have higher computational ca-
pability than the nodes in B-Level group. In addition, nodes in A-Level group compute
enormous amounts data and can communicate with other nodes in the same group di-
rectly through transmission media (TM).

(2) Some nodes are formed into a cluster in B-Level group, where each cluster provides a
specific application service. According to the properties of nodes, the nodes are clus-
tered to cluster Bi where 1≤i≤Cnum and Cnum is the total number of clusters in B-Level
group.

(3) For the reliable communication, multiple inter-transmission media (ITM) are used to
connect the nodes between A-Level group and B-Level group. In A-Level group, each
node must forward the message to all nodes in the corresponding cluster of the
B-Level group.

資訊科技國際期刊第四卷第二期 - 163 -

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

 Cloud
(Internet)

：User

A

B1 B2 B3 B4

：Node

：TM (The transmission media between nodes of each cluster)
：ITM (The inter-transmission media between A-Level group and B-Level group)

A1

A2

A3

A5
A-Level

group

B-Level
group

A4

…… ……

Figure 3 Example of topology of cloud computing

However, a node is said to be healthy if it follows the protocol specifications during the

execution of a protocol. The fault symptom of process is called disorderly fault. The behavior
of a disorderly fault is the fault can cause other components cannot complete work correctly
and synchronously. A disorderly faulty process takes place when a node fails to transmit the
fake messages and other nodes receive the same fake messages. However, the behavior of
disorderly faulty process is unpredictable and to confuse other nodes to receive incorrect
messages to complete a specific service for user. Therefore, the disorderly faulty processes
will influence each node in the system finish user’s request synchronization. Here, a solution
of the agreement problem in the cloud computing with disorderly faulty processes is pre-
sented.

3. The Related Issues of Agreement Problem

In order to handle the applications more correctly in the cloud computing, the agreement

problem is a very important topic. Simply, the cloud computing must achieve an agreement
before any applications executing. Traditionally, the agreement problem is classified into three
kinds: Byzantine Agreement (BA) problem, consensus problem and interactive consistency
problem.

3.1 Agreement Problems

The BA problem is one of the most fundamental problems concerning reaching agree-
ment in distributed systems [5]. First studied by Lamport, it is a well-known paradigm for
achieving reliability in a distributed network of nodes [5]. According to the definition of the
BA problem by Lamport:

1) There are n nodes, of which at most ⎣(n-1)/3⎦ nodes could fail without breaking down
a workable network;

2) The nodes communicate with each other through message exchange in a fully con-
nected network;

 - 164 - 資訊科技國際期刊第四卷第二期

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

3) The message sender is always identifiable by the receiver;
4) A node is chosen as a source, and its initial value vs is broadcasted to other nodes and

itself to execute the protocol [5].

A closely related sub-problem of the BA problem, the consensus problem, has been stud-

ied extensively in the literature [6,8,12]. In this study, the consensus problem is revised in a
cloud computing. The consensus problem requires a protocol to allow the components to ex-
change messages then the healthy components are to achieve consensus. Hence, the consensus
is reached if the following constraints are met:
Agreement: All healthy nodes agree on a common value vi.
Validity: If the initial value of each healthy node is vi, then all healthy nodes shall agree

al value v the source node sends, v=vi. on the initi
Another closely related sub-problem, the interactive consistency problem has been stud-

ied extensively [2]. The definition of the problem is to make the healthy nodes in an n-node
distributed system reach interactive consistency. Each node chooses an initial value and
communications with the others by exchanging messages. There is interactive consistency in
that each node i has its initial value vi and agrees on a set of common values. Therefore, in-
teractive consistency has been achieved if the following conditions are met:
Agreement: Each healthy node agrees on a set of common values V=[v1,v2,…,vn].
Validity: the initial value of each healthy node is vi, then the i-th value in the common vec-

d be vi.
If

tor V shoul
In this study, the agreement problem with fallible processes in the cloud computing to-

pology is revised. The problem requires all healthy nodes to reach agreement when some of
components might be faulty. A distributed system can attain stable results without any influ-
ence from faulty components. However, in many cases, the faulty components will influence
the system to reach agreement.

However, in this study, the solutions of the interactive consistency problem in A-Level
group and the consensus problem in B-Level group are considered. Finally, the service appli-
cations of user’s request can be completed.

3.2 The Types of Failure Process

The process fault is called the disorderly fault. The symptoms of disorderly fault that such
fault always sends the constant value and it means process in the node-running overflow or
procedure of operation system execute buffering. In the service platform of cloud computing
where the nodes have to ensure all applications can be stable provided for users. If a process
is in the abnormal state of the specific service cluster then the application cannot to be pro-
vided. When the operation system is running unstable or the memory capacity is not enough,
or the interrupt of process is happened, then the disorderly faulty process is occurred in the
node. However, in this study the disorderly faulty process that the general point is mean the
software failure. In this definition, the disorderly faulty process will send the unreliable mes-
sages to other nodes and receive the same messages that have been changed. The disorderly
fault represents the behavior of a disorderly faulty process is unstable. The healthy process
can transmit messages on time or correctly and complete applications synchronously, but the
disorderly faulty process may be inconsistent. In other words, the disorderly faulty process
cannot send correct messages.

資訊科技國際期刊第四卷第二期 - 165 -

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

4. The Proposed Protocol

Cloud computing can provide multiple services [9,14,21]. In this study, the agreement

problem is revisit in a cloud computing where disorderly faulty processes may influence ser-
vices provide normally. In this study, a new protocol called Protocol of Fallible Processes
Agreement (PFPA in short) is proposed to solve the agreement problem when caused by dis-
orderly faulty processes that may send incorrect messages to influence the cloud computing to
reach agreement. When the disorderly faulty processes exist in the cloud computing then two
rounds of message exchange required can be estimated to solve the agreement problem. For
instance, if the faulty components are disorderly faulty processes, then PFPA can save some
rounds required to remove the influence from the disorderly faulty processes. In the cloud
computing topology, the main work of A-Level group’s nodes is collecting user requests. Each
node in A-Level group receives the various requests from users, while the nodes in B-Level
group’s cluster provide many services for users. Hence, all nodes may receive different initial
values different two level groups. The protocol PFPA is executed by nodes in the X-Level
groups, where X is the A or B-Level group. Therefore, the interactive consistency problem in
A-Level group is discussed first, and then the consensus problem in B-Level group is ex-
plained.

In this study, the protocol PFPA is proposed to reach an agreement in a cloud computing.
Each node in A-Level group that uses the service request as the initial value executes the
PFPA to obtain the common vector DECA. Therefore, the PFPA is executed to solve the inter-
active consistency problem by nodes in A-Level group. After each node of A-Level group has
been obtained the common vector value (DECA), then each node of the A-Level group for-
wards the element of vector DECA to the nodes in the B-Level group. However, the specific
service request can be conformed by the nodes of the same group in the B-Level group.

Each node in the same cluster of B-Level group receives the element from the nodes of
A-Level group. In the B-Level group, nodes may receive the fake value by the disorderly
faulty processes in A-Level group. The nodes in B-Level group receive the fake value from
failure processes of A-Level group through inter-transmission media. Therefore, the total
number of allowable faulty processes in A-Level group must be less than the half of the total
number of processes in A-Level group.

Sequentially, each node in the same cluster of B-Level group has to take majority value
of the received element values (DECA). Hence, the initial value of each node can be obtained
in the same cluster of B-Level group. Nodes in the same cluster of B-Level group must ex-
change and receive the initial value with other nodes by executing the Agreement Process.
Finally, each node takes a majority value to get the DECB value. Then the agreement value
can be obtained by the PFPA. PFPA is invoked to solve the agreement problem with disor-
derly faulty processes in cloud computing. Based on the network topology of cloud comput-
ing, PFPA can allow each node to transmit messages to other nodes without influence from
disorderly faulty processes, the proposed protocol is shown in Figure 4. The PFPA executes
the follow steps:
Step 1: The nodes of A-Level group execute the Agreement Process to obtain DECA (vector

value) (for the node i in A-Level group with initial value vi; 1≤i≤nA, where nA is the to-
tal number of nodes in the A-Level group).

Step 2: Each node of A-Level group sends the specific element of DECA to the nodes of clus-
ter in B-Level group that provide the specific application.

Step 3: Each node k in the same cluster of the B-Level group takes a majority value MAJk
(1≤k≤nBj, where nBj is the total number of nodes in the cluster j of B-Level group) of
the received elements, then the initial value vk of each node k can be obtained.

 - 166 - 資訊科技國際期刊第四卷第二期

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

Step 4: The nodes of cluster in B-Level group execute the Agreement Process (for the node i in
the cluster j of B-Level group with common value vi; 1≤i≤nBj).

Step 5: Each node of the same cluster in B-Level group takes a majority value from DECB,
and then the agreement value v (single value) is obtained.

The node in cluster of B-Level group receives the initial value through the PFPA. The

Agreement Process of PFPA requires two rounds to receive sufficient messages for nodes of
A- and B-Level groups. In the first round of Message Exchange Phase, each node parallel
transmits its initial value to other nodes in the same cluster, then receives the value, and stores
it at the first level of its mg-tree. The mg-tree is a tree structure that is used to store the re-
ceived messages [15]. A detailed description of the mg-tree is presented in Appendix I. Sub-
sequently, each node in the same cluster transmits the received messages to other nodes and
stores it at second level in its mg-tree. In the Decision Making Phase of Agreement Process,
each node reorganizes its mg-tree into a corresponding ic-tree. The ic-tree is a tree structure
that is used to store a received message without repeated node names [15]. The detailed de-
scription of the ic-tree is presented in Appendix II. The function VOTE is applied to the root
of each corresponding ic-tree to take the majority value, and then a vector value DECA is ob-
tained. Each element of DECA is mapped to a specific application that will be executed in the
corresponding cluster of B-Level group. Each node of the same cluster in the B-Level group
takes a majority value as the initial value from the vector. Sequentially, each node in the same
cluster executes the Message Exchange Phase of Agreement Process and reorganizes its
mg-tree into a corresponding ic-tree. Then, the function VOTE is applied to obtain the agree-
ment value. Finally, all healthy nodes in the same cluster are achieved with an agreement
value of DECB to reach agreement.

資訊科技國際期刊第四卷第二期 - 167 -

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

PFPA for node i in X-Level Group
if X = A,

Do Agreement Process(i, nA, A-Level group)
Send DECA to the nodes in the cluster of B-Level Group

If X=B,
Set the initial value vi of node i = MAJ(v1, …, vk, …, vnx) where vk is the value received
from the node k in A-Level Group.
Do Agreement Process(i, nB, B-Level group)
Agree on v = MAJ(DECB), end.

Agreement Process(i, nX, X-Level group)
Message Exchange Phase:
r = 1, do:

A) Each node i parallel broadcasts its initial value vi to other nodes in the cluster of an
X-Level group.

B) Each node receives and stores the nX values sent from nX nodes of the cluster in an
X-Level group in the corresponding root of each mg-tree.

for r = 2
C) Each node parallel transmits the values at the first level of the corresponding mg-tree to

other nodes in the cluster of X-Level group.
D) Each node receives values from other nodes and stores them in the second level of nX

corresponding mg-trees.
Decision Making Phase:

Step 1: Reorganize each mg-tree into a corresponding ic-tree by deleting the vertices with
repeated node names.

Step 2: VOTE(i, nX) function is paralleled to apply to the root of each corresponding
ic-tree, then a vector DECX as a common value with nX elements has been obtained.

Function VOTE(i, nX)
1. val(i), if i is a leaf.
2. The majority value in the set of {VOTE (αi, nX)|1≤i≤ nX, and vertex αi is a child of

vertex α}, if such a majority value exists.
3. A default value φ is chosen otherwise.

Function MAJ
Step 1: Count the received values and take the majority, then set a majority value x.
Step 2: If the majority value is not existed, then output a majority value φ.
Step 3: Otherwise, output a majority value x. (where x ∈ {0,1})

Figure 4 The proposed protocol PFPA

5. Examples of Executing PFPA

In this section, an example of executing the PFPA is given. In addition, an example of
A-Level group is shown in Figure 5-1 and 5-4. The nodes in A-Level group receive service
requests. The protocol, for this example, requires two rounds to exchange the messages. Each
node in A-Level group can obtain the initial value as shown in Figure 5-2. The different re-
quests are received from different users by each node, such as A1 receives the video service
request and A5 receives the blog service request, etc. In each round of the Message Exchange
Phase, each node parallel transmits the initial value to all nodes in the same cluster and stores
the received values in the corresponding root of the mg-tree as shown in Figs. 5-3 and 5-5.
Subsequently, in the Decision Making Phase, the mg-tree is reorganized into the ic-tree by

 - 168 - 資訊科技國際期刊第四卷第二期

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

deleting the vertices with repeated node names as shown in Figure 5-6. The function VOTE is
applied to each corresponding ic-tree of all nodes and then taking the majority value. Eventu-
ally, the common vector value DECA is obtained for all nodes in A-Level group as shown in
Figure 5-7.

All nodes in the cluster of B-Level group receive the element of DECA from the nodes of
A-Level group by inter-transmission media. All nodes in cluster B1 receive the element of
DECA that transmits from the nodes in A-Level group for the specific application needing to
be serviced. Subsequently, the received element of DECA is taken a majority value by each
node in cluster B1 as shown in Figure 7.

The example of cluster B1 in B-Level group is presented in Figure 8-1 and 8-4. In this
example, there are six nodes in cluster B1 and two rounds of message exchange are required.
Figure 8-2 presents the initial value of each node. In the first round of Message Exchange
Phase, the node sends the initial value (=1) to other nodes and receives the initial value from
other nodes in the same cluster as shown in Figure 8-3. The execution of the second round of
Message Exchange Phase by node B11 is shown in Figure 8-5. In the Decision Making Phase,
the mg-tree of B13 is reorganized into the corresponding ic-tree as shown in Fig 8-6; and the
function VOTE is applied on the ic-tree’s root to take the majority value DECB, then an
agreement value (=1) is obtained as shown in Figure 8-7. Hence, the agreement value has
been obtained and all healthy nodes reach agreement.

Figure5-1 Example of A-Level group in the 1st
round

A1 A2 A3 A4 A5 A6 A7
0 1 0 1 0 1 0

Figure 5-2 The initial value of each
node in A-Level group

level 0 Root level 1 level 0 Root level 1 level 0 Root level 1 level 0 Root level 1
A1 1 0 A2 1 0 A3 1 0 A4 1 0

 2 0 2 0 2 0 2 0

 3 1 3 1 3 1 3 1

 4 1 4 1 4 1 4 1
 5 0 5 0 5 0 5 0
 6 0 6 0 6 0 6 0

 7 0 7 0 7 0 7 0

資訊科技國際期刊第四卷第二期 - 169 -

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

level 0 Root level 1 level 0 Root level 1 level 0 Root level 1

A5 1 0 A6 1 0 A7 1 0
 2 0 2 0 2 0

 3 1 3 1 3 1

 4 1 4 1 4 1
 5 0 5 0 5 0
 6 0 6 0 6 0

 7 0 7 0 7 0

Figure 5-3 The mg-tree of each node in the A-Level group at the 1st round

Figure 5-4 Example of A-Level group in the 2nd round

 - 170 - 資訊科技國際期刊第四卷第二期

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

level 0 Root level 1 level 2
A1 Val(1)= 0 11 1

 12 0
 13 0
 14 0

 15 1

 16 0
 17 0

 Val(2)= 0 21 1

 22 0
 23 0
 24 0

 25 1

 26 0
 27 0

 Val(3)= 1 31 1

 32 1
 33 1
 34 0

 35 1

 36 1
 37 1

 Val(4)= 1 41 1

 42 1
 43 1
 44 0

 45 1

 46 0
 47 1

 Val(5)= 0 51 1

 52 0
 53 0
 54 0

 55 1

 56 0
 57 0

 Val(6)= 0 61 1

 62 0
 63 0
 64 0

 65 1

 66 0
 67 0

 Val(7)= 0 71 1

 72 0
 73 0
 74 0

 75 1

 76 0
 77 0

Figure 6-5 The mg-tree of each node in the A-Level group at the 2nd round

資訊科技國際期刊第四卷第二期 - 171 -

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

level 0 Root Level 1 level 2
A1 Val(1)= 0

 12 0
 13 0
 14 0

 15 1

 16 0
 17 0

 Val(2)= 0 21 1

 23 0
 24 0

 25 1

 26 0
 27 0

 Val(3)= 1 31 1

 32 1

 34 0

 35 1

 36 1
 37 1

 Val(4)= 1 41 1

 42 1
 43 1

 45 1

 46 0
 47 1

 Val(5)= 0 51 1

 52 0
 53 0
 54 1

 56 0
 57 0

 Val(6)= 0 61 1

 62 0
 63 0
 64 0

 65 1

 67 0

 Val(7)= 0 71 1

 72 0
 73 0
 74 0

 75 1

 76 0

Figure 6-6 The ic-tree of each node in A-Level group

 - 172 - 資訊科技國際期刊第四卷第二期

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

Level 1 level 0 Root
VOTE(1) =(0,0,0,1,0,0)= 0 VOTE(A1) =0,0,1,1,0,0,0
VOTE(2) =(1,0,0,1,0,0)= 0
VOTE(3) =(1,1,0,1,1,1)= 1
VOTE(4) =(1,1,1,1,1,1)= 1
VOTE(5) =(1,0,0,0,0,0)= 0
VOTE(6) =(1,0,0,0,1,0)= 0
VOTE(7) =(1,0,0,0,1,0)= 0

Figure 6-7 The agreement value of node A3

Figure 7 Each node of B1 cluster receives the element of DECA from A-Level group

B11

B13
B14

B12

B-Level
group

B15

B16

B1

 : Healthy TM

: Disorderly Faulty Processes

 : Healthy Node

Figure 8-1 Example of B1 cluster in the B-Level
group

B11 B12 B13 B14 B15 B16
1 1 1 1 1 1
Figure 8-2 The initial value of

each node in B1 cluster

 level 0

Root
level

1
 level 0

Root
level

1
 level 0

Root
level

1
 level 0

Root
level

1
 level 0

Root
level

1 …

Val(B11) 1 0 Val(B12) 1 0 Val(B13) 1 0 Val(B14) 1 0 Val(B15) 1 0 …
=1 2 1 =1 2 1 =1 2 1 =1 2 1 =1 2 1 …

 3 1 3 1 3 1 3 1 3 1 …
 4 1 4 1 4 1 4 1 4 1 …
 5 0 5 0 5 0 5 0 5 0 …
 6 1 6 1 6 1 6 1 6 1 …

B11 B12 B13 … B18
A1 1 A1 1 A1 1 … A1 1
A2 1 A2 1 A2 1 … A2 1
A3 0 A3 0 A3 1 … A3 0
A4 1 A4 0 A4 0 … A4 0
A5 1 A5 1 A5 1 … A5 1
A6 0 A6 0 A6 0 … A6 0
A7 1 A7 1 A7 1 … A7 1
MAJ1=1 MAJ2=1 MAJ3=1 … MAJ8=1

Figure 8-3 The mg-tree of each node in B1 cluster at the 1st round

資訊科技國際期刊第四卷第二期 - 173 -

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

B11

B13
B14

B12

B-Level
group

B15

B16

B1

 : Healthy TM

: Disorderly Faulty Processes

 : Healthy Node

Figure 8-4 Example of cluster B1 in the 2nd round

level 0 Root level 1 level 2
B13 Val(1)= 0 11 1

 12 1
 13 0

 14 1
 15 1
 16 0

 Val(2)= 1 21 1
 22 1
 23 0

 24 1
 25 1
 26 0

 Val(3)= 1 31 1
 32 1
 33 0

 34 1
 35 1
 36 0

 Val(4)= 1 41 1
 42 1
 43 0

 44 1
 45 1
 46 0

 Val(5)= 0 51 1
 52 1
 53 0

 54 1
 55 1
 56 0

 Val(6)= 1 61 1
 62 1
 63 0

 64 1
 65 1
 66 0

Figure 8-5 The mg-tree of node B13 at the
2nd round

level 0 Root level 1 level 2
B13 Val(1)= 0

 12 1
 13 0

 14 1
 15 1
 16 0

 Val(2)= 1 21 1
 22 1
 23 0

 24 1
 25 1
 26 0

 Val(3)= 1 31 1
 32 1
 33 0

The ic-tree
erased the ver-
tices with re-
peated names

from the mg-tree.

 34 1
 35 1
 36 0

 Val(4)= 1 41 1
 42 1
 43 0

 45 1
 46 0

 Val(5)= 0 51 1
 52 1
 53 0

 54 1

 56 0

 Val(6)= 1 61 1
 62 1
 63 0

 64 1
 65 1

Figure 8-6 The ic-tree of node B13

 - 174 - 資訊科技國際期刊第四卷第二期

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

level 1 level 0 Root

VOTE(1) =(1,0,1,1,0)= 1 VOTE(B1)=(1,1,1,1,1,1)= 1
VOTE(2) =(1,0,1,1,0)= 1
VOTE(3) =(1,1,1,1,0)= 1
VOTE(4) =(1,1,0,1,0)= 1
VOTE(5) =(1,1,0,1,0)= 1
VOTE(6) =(1,1,0,1,1)= 1

Figure 8-7 The agreement value of node B13

6. The Correctness and Complexity

According to the literature, a protocol is obtained and the following proofs for the agree-

ment and validity property are given in this section. The following lemmas and theorems are
used to prove the correctness and complexity of the Protocol of Fallible Processes Agreement
(PFPA in short). The notations of PFPA proving are shown as follows:

Notation Description
n: The number of nodes in the cloud computing.
TMij: The transmission media between node i and node j.
ITM: The inter-transmission media between A-level group and B-level group.
c: The connectivity of network topology.
cA: The connectivity in A-Level group.
cBj: The connectivity in the cluster j of B-Level group.
ITMBj: The connectivity with each node of the j cluster in B-Level group between

A-Level group.
ITMBjc: The connectivity with each node in the cluster j of B-Level group.
nA: The number of nodes in A-Level group.
nBj: The number of nodes in the cluster j of B-Level group.
NfpA: The number of allowable disorderly faulty processes in A-Level group.
NfpBj: The number of allowable disorderly faulty processes in the cluster j of B-Level

group.
Nfp: The number of allowable disorderly faulty processes in the cloud computing.
tfA: The number of allowable disorderly faulty processes in A-Level group.
tfB: The number of allowable disorderly faulty processes in B-Level group.
Tf: The total number of allowable disorderly faulty processes.
σ: The number of rounds required in the Agreement Process.

6.1 Correctness of PFPA

To prove that vertex α is common; the term common frontier [2] is defined as follows:
When every root-to-leaf path of the mg-tree contains a common vertex, the collection of the
common vertices forms a common frontier. In addition, the constraints, Agreement and Valid-
ity, can be rewritten as:

 Agreement: Root i is common
 Validity: VOTE(i)=vi for each healthy node, if the node i is healthy
Every healthy node has the same values collected in the common frontier if a common

frontier does exist in a healthy node’s mg-tree. Subsequently, using the same function VOTE

資訊科技國際期刊第四卷第二期 - 175 -

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

to compute the root value of the tree structure, every healthy node can compute the same root
value because the same input (the same collected values in the common frontier) and the same
computing function will produce the same output (the root value). Since PFPA can solve the
agreement problem, the correctness of PFPA should be examined in the following two ways
[2].
(1) Correct vertex: Vertex αi of a tree is a correct vertex if node i (the last node name in ver-

tex αi’s node name list) is healthy. In other words, a correct vertex is a place to store the
value received from a healthy node.

(2) True value: For a correct vertex αi in the tree of a healthy node, val(αi) is the true value of
vertex αi if TMij is fault-free. In other words, a correct vertex is a place to store the value
received from a healthy node. In other words, the stored value is called the true value of a
vertex if the value stored in such a vertex is correct from the influence of a faulty transmis-
sion media.

Lemma 1. The healthy destination node can detect the influence of the values through
disorderly faulty processes.
Proof: The message(s) send by disorderly faulty processes can be detected if the sending

node sends the same values that are not following the initial value passed.
Lemma 2. The healthy nodes can receive message from healthy node, if the number of cA
and cBj and ITMBj is maximal.
Proof: A healthy sender node broadcasts a message to others and itself. In the worst case, a

healthy node can receive cA-NfpA, cBj-NfpBj and ITMBjc-NfpA messages transmitted in
each round of the message exchange because the disorderly faulty processes can be
detected. If cA-NfpA>2NfpA, cBj-NfpBj>NfpBj and

Bj
Σ ⎡ITMBj/2⎤-1≥[ITMBjc ≥ (2NfpA+1)], a

healthy node can determine messages from sender nodes by taking the majority value
from the values received in each message exchange.

Theorem 1. The influences from disorderly faulty processes can be removed by a healthy
node.
Proof: By Lemma 1 and Lemma 2, the theorem is proved.
Theorem 2. Each node can receive the values without influences of any disorderly faulty
processes from the sender node via PFPA in each round, then nA>2NfpA+1 in A-Level
group and nBj> 2NfpBj+1 in the cluster j of B-Level group. numC

j 1max =

Proof: The influences of disorderly faulty processes between any pairs of nodes can be ig-
nored in each round of message exchange and nA>2NfpA+1 in A-Level group; and
nBj>2NfpBj+1 in the cluster j of B-Level group. The reason is that the healthy sender
nodes nA (nBj) copies of message to all destination nodes. In the worst case, a healthy
destination node receives nA-NfpA messages transmitted via the healthy sender node in
A-Level group; and receives nBj-NfpBj messages transmitted via the healthy sender
node in the cluster j of B-Level group.

Theorem 3. The healthy node can detect the disorderly faulty processes in the network.
Proof: In the proposed protocol PFPA, there are two rounds of message exchange in Agree-

ment Process, where Nfp≥(⎣(n-1)/3⎦) and n>3, so there are two rounds of message ex-
change in the Message Exchange Phase. Each healthy node receives the message from
the sending node in the first round of message exchange and receives other nodes
messages in the second round of message exchange. In terms of the Lemma 1, each
healthy node can detect the disorderly faulty processes in the cloud computing.

Lemma 3. In an ic-tree, all correct vertices are common.
Proof: The tree structure has conversed from mg-tree to ic-tree. At the level σ or upon of

ic-tree, the correct vertex i has at least 2σ-1 children, in which at least σ children are
correct. The real value of these σ correct vertices is common, and the majority value of

 - 176 - 資訊科技國際期刊第四卷第二期

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

vertex α is common. For this reason, all correct vertices of the ic-tree are common.
Lemma 4. The common frontier exists in the ic-tree.
Proof: There are σ vertices along each root-to-leaf path of an ic-tree, so that though most σ-1

nodes have failed, at least one vertex is correct along each root-to-leaf path of the
ic-tree. The correct vertex is common, and the common frontier exists in each healthy
node ic-tree by Lemma 1.

Lemma 5. Let α be a vertex, and α is common if there is a common frontier in the
sub-tree rooted at i.
Proof: When the height of α is 0, and the common frontier exists, α is common. If the height

of α is σ, the children of α are all in common by induction hypothesis with the height
of the children at σ-1. Then the vertex α is common.

Corollary. If the common frontier exists in the ic-tree, then the root is common.
Theorem 4. The root of a healthy node’s ic-tree is common.
Proof: By Lemmas 1, 2 and the Corollary, the theorem is proved.
Theorem 5. The proposed protocol PFPA solves the agreement problem in a cloud com-
puting.
Proof: Inasmuch as the theorem must be described that PFPA meets the constraints Agree-

ment’ and Validity’.
Agreement’: Root i is common, and by Theorem 3, Agreement’ is satisfied.
Validity’: VOTE(i)=vi for each healthy node, if the initial value of the node i is vi.
Whereas all nodes are healthy, the nodes use PFPA to communicate with all others. The
message of correct vertices for all healthy nodes’ mg-trees is vi. When the tree structure
has converted from mg-tree to ic-tree, the correct vertices still exist. Therefore, every
correct vertex of the ic-tree is common (refer to Lemma 4), and its true value is vi. This
root is common by Theorem 4. The computed value VOTE(i)=vi is stored in the root of
the ic-tree for all healthy nodes. (Validity’) is satisfied.

6.2. Complexity of PFPA

The complexity of PFPA is evaluated in terms of: 1) the maximum number of allowable

disorderly faulty processes; and 2) the minimum number of rounds to exchange messages.
Theorems 6 and 7 show that the optimal solution is reached.
Theorem 6. The number of allowable disorderly faulty processes is Tf.
Proof: According to the past literatures of the agreement problem, the influence of disorderly

faulty processes is similar as faulty transmission media; hence, the constraint of the
maximum number of allowable faulty (n>2Nfp+1) can be applied to our study.

In a cloud computing, PFPA can tolerate tfA (≥2NfpA+1) disorderly faulty processes in
A-Level group and the fault tolerant capability of B-Level group is tfB

(≥ 2NfpBj+1). The total number of allowable disorderly faulty processes by
PFPA is Tf (≥(2NfpA+1)+ (2NfpA+1)), and the number of disorderly faulty
processes is maximal in the cloud computing.

numC
j 1max =

numC
j 1max =

Theorem 7. PFPA requires σ rounds of message exchange to solve the agreement in a
cloud computing and σ is minimum number of rounds.
Proof: The message passing is required only in the Message Exchange Phase; two rounds are

used to send the sufficient messages to achieve agreement in an n-nodes distributed
system [15]. In a cloud computing, each node needs to exchange messages with other
nodes. Therefore, the constraint of the minimum number with two rounds can be ap-
plied to the study. However, in a cloud computing, two rounds of exchange messages
in the A and B-level group are required. In addition, each node in the same cluster of
B-Level group needs to receive messages from A-Level group’s nodes; therefore, one

資訊科技國際期刊第四卷第二期 - 177 -

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

round is required. In conclusion, the minimum number rounds to exchange message
required is optimal.

As a result, PFPA requires a minimal number of rounds and tolerates a maximal number
of disorderly faulty processes to reach a common agreement with all healthy nodes. The op-
timality of the protocol is proven.

7. Conclusions

Cloud computing is a new concept of distributed systems [1,3,9,11,14,21]. It has greatly

encouraged distributed system design and practice to support user-oriented services with ap-
plication [3,9,14,21]. In the Internet platform of cloud computing where each node needs to
complete the user’s requests synchronously and to reach the common agreement as specific
service. Fault-tolerance is an important research topic in the study of distributed systems and
it is a fundamental problem in distributed systems; there are many relative literatures in the
past [2,5,6,7,8,10,12,13,15]. According to previous studies, network topology plays an im-
portant role in the agreement problem, but the results cannot cope with a cloud computing
with fallible processes and the agreement problem thus needs to be reinvestigated. Moreover,
in this study, the agreement problem with disorderly faulty processes in a cloud computing
has been solved by the proposed protocol.

The proposed protocol, Protocol of Fallible Processes Agreement (PFPA in short), en-
sures that all healthy nodes in the cloud computing can reach a common value. Moreover, the
new protocol PFPA is adapted to the cloud computing and the solution of PFPA is applied to a
cloud computing with fallible processes. Nevertheless, the interactive consistency problem in
A-Level group and the consensus problem in B-Level group have been solved. PFPA can de-
rive the bound of allowable disorderly faulty processes. PFPA uses the minimum number of
rounds of message exchange and tolerates the maximum number of allowable disorderly
faulty processes in a cloud computing. Furthermore, the fault-tolerance capacity is enhanced
by PFPA.

Appendix

I. The Message Gathering Tree (mg-tree)

Each healthy node maintains such an mg-tree during the execution of PFPA. In the first

round of Message Exchange Phase in Agreement Process, the node i broadcasts its initial
value to other nodes. When the healthy node receives the value sent from the sending node i,
it stores the received value, denoted as val(i) at the root of its mg-tree, as shown in Figure 5-3.
In the second round of Message Exchange Phase in Agreement Process, each node multicasts
the value stored in the root of the mg-tree to all nodes. If the node j sends message val(i) to
node k, then node k stores the received value from node j, denoted as val(ij), in vertex ij of its
mg-tree, shown in Figs. 5-4. The val(αk) shows that the message is sent to a series of receiv-
ers, denoted as α, and that node k is the latest receivers. For instance, the message val(ij… k)
is stored in the vertex ij… k of an mg-tree, which implies that the message just received was
sent through the node i, node j, .., and that node k (the node k is the latest node to pass the
message). In addition, it is denoted as val(αk). When the message is transmitted through a
node more than once, the name of the node will be repeated correspondingly. For example,
val(11), stored in vertex 11 of Figure 5-4, indicates that the message is sent from node A1,
then through node A1 again.

In summary, the root of an mg-tree is always named i to denote that the stored message is
sent from the node i in the first round, and the vertex of an mg-tree is labeled by a list of node

 - 178 - 資訊科技國際期刊第四卷第二期

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

names. The node name list contains the names of the nodes through which the stored message
was transferred.

Appendix II. The Information-Collecting tree (ic-tree).

An ic-tree is reorganized from a corresponding mg-tree by removing the vertices with re-

peated node names in order to reduce the influence from a faulty node repeatedly in an ic-tree.
In Figure 6-6, we show an example of reorganizing an mg-tree to an ic-tree by deleting the
repeated node names of mg-tree.

Acknowledgment

This work was supported in part by the Taiwan National Science Council under Grants

NSC96- 2221-E-324-021 and NSC97-2221-E-324–007 -MY3.

Reference
[1] Aymerich, F.M., Fenu, G., and Surcis, S., “An Approach to a Cloud Computing Net-

work,” the First International Conference on the Applications of Digital Information
and Web Technologies, pp. 113-118, August 2008.

[2] Fischer, M., and Lynch, N., “A Lower Bound for the Assure Interactive Consistency,”
Information Processing Letters, Vol. 14, No.4, pp. 183-186, 1982.

[3] Grossman, R.L., Gu, Y., Sabala, M., and Zhang, W., “Compute and Storage Clouds Us-
ing Wide Area High Performance Networks,” Future Generation Computer Systems,
Vol. 25, No. 2, pp. 179-183, February 2009.

[4] Halsall, F., Data Links, Computer Networks and Open Systems. 4th ed., Addi-
son-Wesley Publishers, pp. 112-125, 1995.

[5] Lamport, L., Shostak, R., and Pease, M., “The Byzantine General Problem,” ACM
Transactions on Programming Language and Systems, Vol. 4, No. 3, pp. 382-401,
July 1982.

[6] Meyer, F.J., and Pardhan, D.K., “Consensus with Dual Failure Modes,” IEEE Transac-
tions on Parallel and Distributed System, Vol. 2, No. 2, pp. 214-222, 1991.

[7] Pease, M., Shostak, R., and Lamport, L., “Reaching Agreement in Presence of Faults,”
Journal of ACM, Vol. 27, No. 2, pp. 228-234, April 1980.

[8] Siu, H.S., Chin, Y.H., and Yang, W.P., “A Note on Consensus on Dual Failure Modes,”
IEEE Transactions on Parallel and Distributed Systems, Vol. 7, No. 3, pp. 225-230,
1996.

[9] Vouk, M.A., “Cloud Computing- Issues, Research and Implementations,” Information
Technology Interfaces, pp. 31-40, June 2008.

[10] Wang, S.C., Chin, Y.H., Yan, K.Q., and Chen, C., “Achieving Byzantine Agreement in a
Generalized Network Model,” CompEuro ‘89, Vol. 4, pp. 139-145, 1989.

[11] Wang, L.H., Tao, J., and Kunze, M., “Scientific Cloud Computing: Early Definition and
Experience,” the 10th IEEE International Conference on High Performance Com-
puting and Communications, pp. 825-830, 2008.

[12] Wang, S.C., and Yan, K.Q., “Revisit Consensus Problem on Dual Link Failure Modes,”
the International Computer Software & Applications Conference, pp. 84-89, August
1998.

[13] Wang, S.C., Yan, K.Q., Wang, S.S., and Zheng, G.Y., “Reaching Agreement Among Vir-
tual Subnets in Hybrid Failure Mode,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 19, No. 9, pp. 1252-1262, September 2008.

[14] Weiss ,A., “Computing in The Clouds,” netWorker, Vol. 11, No. 4, pp. 16-25, 2007.

資訊科技國際期刊第四卷第二期 - 179 -

International Journal of Advanced Information Technologies (IJAIT), Vol. 4, No. 2

[15] Yan, K.Q., Chin, Y.H., and Wang, S.C., “Optimal agreement protocol in malicious faulty
processors and faulty links,” IEEE Transactions on Knowledge and Data Engineering,
Vol. 4, No. 3, pp. 266-280, June 1992.

[16] “Amazon.com: Online Shopping for Electronics, Apparel, Computers, Books, DVDs &
more,” http://www.amazon.com/, January 2010.

[17] “Application Delivery Networking, Application Acceleration, Internet Traffic Man-
agement System: Zeus.com,” http://www.zeus.com/, January 2010.

[18] “Application Traffic Management, Application Security,” http://www.zeus.com/prod-
ucts/traffic-manager/index.html, January 2010.

[19] “Cloud Computing,” http://www.zeus.com/cloud_computing/, January 2010.
[20] “Load Balancing, Load Balancer,” http://www.zeus.com/products/zxtmlb/index.html,

January 2010.
[21] “More Google Product,” http://www.google.com/options/, January 2010.
[22] “What is Cloud Computing?,” http://www.zeus.com/cloud_computing/cloud.html,

January 2010.
[23] “ZXTM for Cloud Hosting Providers,” http://www.zeus.com/cloud_computing/for_

cloud_providers.html, January 2010.

 - 180 - 資訊科技國際期刊第四卷第二期

	IJAIT 4(2)-12-cover
	IJAIT 4(2)-12
	Abstract
	1. Introduction
	2. Related Work
	3. The Related Issues of Agreement Problem
	4. The Proposed Protocol
	5. Examples of Executing PFPA
	6. The Correctness and Complexity
	7. Conclusions
	Appendix
	Acknowledgment

